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WIENER WEIGHTED ALGEBRA OF FUNCTIONS OF INFINITELY MANY
VARIABLES

In this article we consider a weighted Wiener type Banach algebra of infinitely many variables.
The main result is a description of the spectrum of this algebra.
Key words and phrases: weighted algebra, spectrum of an algebra.
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Introduction

Algebras of functions with absolutely summing Fourier series are called usually as Wiener
type algebras. In [1] I. Gohberg, S. Goldberg, M.A. Kaashoek have given a description of a
Wiener algebra with weights consisting of functions of several complex variables. They, in
particular, described the spectrum (the set of multiplicative linear functionals) of this algebra.
In this paper we consider a Wiener weighted algebra JN(w) of functions of infinitely many
variables. Our main result is Theorem 1, where we have described the spectrum of W(w). Also
we consider the algebra W+ (w) which consists of analytic functions on a Cartesian product of
balls of radii Pzkm The spectrum of the algebra W+(w) may be identified with the Cartesian
product of these balls. In the case when w(km) = 1 for km > 0 these results was obtained
by AV. Zagorodnyuk and M.A. Mitrofanov in [2]. Spectra of algebras of analytic functions
on Banach spaces were investigated by many authors in [3, 4, 5, 6]. For more informations on
analytic functions on Banach spaces we refer the reader to [7, 8]

1 Main results

Let Coo(Z) be a set of finite integer valued sequences k = (ka)ke® — (K\....4/,0,...),
kk € Z forall@ € N, R\ = Na\ A weight is a map w : Coo(2) [1;00) satisfying
wk ¥s) ~ w(kw(s), where wk) — a>(fci,...,fc/,0,...), w(s) = w(s\,..,sr,0,...),
k+s = (K\N+5S\...,k, +5s,,0,...). Let Wo(if) be the space of all complex valued functions

/ :L- —C ofthe formf(x) = ZE akx » a /m € N, with the norm

=0 lj_’\}fclzov -

| I/ | | = E K ../m-wm/fc//0,..), 0)
I*I=o *I=o

(© Atamanyuk L.S., 2015
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where i is the imaginary unit. Let us denote by W(w) the completion of WO(w) with respect to
the norm (1). Hence every element/ on W(w) has the form

()]
f(x) = £ «/w @
*l=o
and @
= E k K *0< °°. ©)
¥1=0

Lemma 1. Elements of the form (2) under condition (3) generate a weighted Banach-Wiener
algebra.

iy\k
Proof. It is easy to see that W(w) is an algebra. Let fn = £ y b...,|<ie|¥‘ *X*/ then
Id]+ ...+ |fc;|=n
wfnw= X -\ w(h,--- ki).Iff,g € W(w),then
||+ + i
lifngm\\. — E Ififci,.../fc; ~si, ..., sr] A~/ kLS, . .,ST)
R+ \s\=1++m
< E kiljos(wWfoH7(s) = £ |a*K*) £ N»00 = [}nlllignl]
e+ |s]=«+m I*]=n Isl=m
® ® ® ®
Thuslig-' = E |I/9.ll< Z 1M Ifc K Z IIMI X llifrll = lI/1IM 1.
n+Hm-o «HLFO «=0 =0]
The space W(w) may be identified with the weighted ENW{Zn) space of all sequences
{akv..kw (ki, ---[;)}-@owhich are in £i(Zn) and hence W(w) is a Banach space. O

We describe multiplicative linear functionals on W(w). Let w(km) = w(Q,..., kmO0,...),

Pijcm := SUP KNw(km) =, lim 4w {km), @)

P2k, = /.infU Rp»(KT) = klingoo 4w {km). ®)
ov > m—£ *
Then 0 < pUm #~ p2fan< °°.

Foreach A\a,a € N, in the annulus pNd * WX p2iawe define functionals h\(f) on W(zv)

as follows
@

M/) = E ah..*,Ab
Ifc]0 a

where A = (N1i,..., A/,0,...). Then (4) and (5) imply that li\(/) is well-defined. It is easy to
see that /m(/) is multiplicative and linear functional.

Theorem 1. Each multiplicative linear functional @ on W(iv) is an h\(f) for some Aa in
Pi,a ~ I"al » P2a-

Proof Let \n € W(w) be given by ym — etdn The element ym s invertible in W(iv). For any
positive integer Kk,, we have YN\ = w(km) and ykm] = w(-km). Since
(p(YTrT) = (<Kj/m))~4 it follows that w(-km)~1km » N w(km)1/km But then (4) and
(5) imply that A := (p(ym) belongs to the annulus PNdm~  |JAm|~ pi,kme=inally, observe that

@ Sl @ @®
f = X aki..kie *»a€ W(w) canbe writtenasf = £ ak KkT[eikea= > UYn kTIYu
TEO o ' a oo v a

and the series converges in the norm of W(w). Since ¢ is continuous, linear and multiplicative
functional, we conclude that
@ @ @
<K/(*)) = <p( E ah..k,Y[yk) = E ah...... n/mnrym** = E = /M\(/)-
H-0 * 10 « 10 a

[l

On other words the spectrum of W(a>) may be identified with the set of point evaluation
functionals at points {(x\, X2, mmgXx, = € foo WiA ]| ~ P2a}

Remark 1. If we consider the case w(km) — O for km < 0, then the norm, which has been
defined in (3), is actually a seminorm. Taking the quotient algebra with respect to the kernel
of this seminorm we will obtain the algebra W+ (w) which consists of analytic functions on
a Cartesian product of balls of radii p2krmBy the same way like in Theorem 1 we can show
that the spectrum of W+ (w) coincides with the set of point evaluation functionals at points

{(*1,%2,---/*«/-m-) €10 : |x] < p2A}-
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ALMOST KENMOTSU /-MANIFOLDS

In this paper we consider a generalization of almost Kenmotsu /-manifolds. We get basic
Riemannian curvature, sectional curvatures and scalar curvature properties of such type manifolds.
Finally, we give two examples.
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1 Introduction

Let M be a real (2n + s)-dimensional smooth manifold. M admits /-structure [8]if there
exists a non-null smooth (1,1) tensor field ¢, tangent bundle TM, satisfying @3+ ¢ = 0,
rank @ = 2n. An /-structure is a generalization of almost complex (s = 0) and almost contact
(s = 1) structure. In the latter case M is orientable [9]. Corresponding to two complemen-
tary projection operators P and Q applied to TM, defined by P = -@2and Q = @2+ I,
where | identity operator, there exist two complementary distributions V and such that
dim (V) = 2n and dim (fDx) —s. The following relations hold [6]

P = Po= ¢, @) =Qp=0 o¢2P=-P, Q=0

Thus, we have an almost complex distribution (v, J = ¥V, J2= - ij and ¢ acts on 2>Las
a null operator. It follows that

M= X022 vnvA= {0}

Assume that T>j is spanned by s globally defined orthonormal vector {(,} at each point
pE€M,1l<ic< s withitsdual set {//}.Then one obtains

P2= -1+ Z nNI®&i-
/=1

In the above case, M is called a globally framed manifold (or simply an /-manifold) ([1], [5]
and [4]) and we denote its frame structure by M (@, {) . From the above conditions one has

@&i =0, nog =0, if (¥)) = 3L

© Balkan Y.S., Aktan N., 2015

Now we consider Riemannian metric g on M that is compatible with an /-structure such that

g(fX,Y)+g (X,0Y) =0,9 (lIJX-<IOY)=9(X,Y)-i:tln‘<X)|i(Y)’S|-U i) =1 (X).

In the above case, we say that M is a metric /-manifold and its associated structure will be
denoted by M (o, &i,nlg) .
A framed structure M (o, £,) is normal [5] if the torsion tensor Ng of @ is zero i.e., if

Np=N+2>Zani®i= 0,
i=1
where N denotes the Nijenhuis tensor field of @.
Define a2-form @ on M by @ (X,¥Y) = g (¢X,Y),forany X,Y € I (TM). The Levi-Civita
connection V of a metric /-manifold satisfies the following formula [1]:

29((\7X(P)Y,Z) = 3d (X,9Y,9Z)-3d (X,Y,Z)
+ g(N(Y, Z2),yX) + NHY,Z)n"(X)
+ 2iLi (oY, X) ui (Z2) - 2ani (9Z, X) > (YY),

where the tensor field N 2is defined by

Nf (X, Y) = (TexXn™ Y - (ToYrp) X = 24’ (¢X,Y) - 20> (Y, X),

foreachj € {1,..., s}. Following the terminology introduced by Blair [1], we say that a normal
metric /-manifold is a K-manifold if its 2-form ® closed (i.e.,, a® = 0). Since N1 /A m- A nA
®” ¢ 0, a K-manifold is orientable. Furthermore, we say that a K-manifold is a C-manifold if
each nlis closed, an S-manifold if N1 = dn2 mmm= anp= o.

Note that, if s = 1, namely if M is an almost contact metric manifold, the condition a® —O0
means that M is quasi-Sasakian. M is said a K-contact manifold if an = @ and & is Killing.

Falcitelli and Pastore introduced and studied a class of manifolds which is called almost
Kenmotsu /-manifold [3]. Such manifolds admit an /-structure with s-dimensional paral-
lelizable kernel. A metric /.pfc-manifold of dimension (2n +s), s > 1, with /.p/c-structure
(9,&i, ril,g) , is said to be a almost Kenmotsu /.p/c-manifold if the 1-forms //'s are closed
and d® = 2mu A ®. Several foliations canonically associated with an almost Kenmotsu f.pk-
manifold are studied and locally conformal almost Kenmotsu /./?/c-manifolds are characterized
by Falcitelli and Pastore. Ozturk et al. studied almost a-cosymplectic /-manifolds [6]

In this paper we consider a generalization of almost Kenmotsu /-manifolds. We get some
curvature properties.

Throughout this paper we use the notationsn = n1+n2+ .---+rf,{ = \+&{2H--+£s

and & = o} + 2H--+ 5.
2 Almost Kenmotsu /-manifolds

Almost Kenmotsu /-manifolds firstly defined and studied by Aktan et al. as mentioned
below [6].
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Definition 2.1 ([6]). Let M (g, {,, n1g) be (2n + s)-dimensional metric f -manifold. For each
nil<i<s, 1-forms and each ® 2-forms, Tidnl= 0and d® = 2n A ¢ satisfy, then M is called
almost Kenmotsu f-manifold.

Let M be an almost Kenmotsu /-manifold. Since the distribution V is integrable, we have
i¢ni = 0, [E,¢] € V and [X,&] € V forany X € ' (V). Then the Levi-Civita connection is
given by

22 ((Vxv) r,Z) = 27]T (g (WX, Y) ) - nl (Y) uX) ,z)+ g(N (Y,2), ¢X), @

forany X,Y,Z € I' (TM). Putting X = iwe obtain V&.¢ = Owhich implies € and
thenv &di = v @ , since [, {\= 0.

We put AjX = —S7xli and hj = - , where L denotes the Lie derivative operator.

Proposition 2.1 ([6]). Forany i € {1,... ,s} the tensor field Al is a symmetric operator such
that

1) Ai(Ci) = 0, foranyj € {1,...,s},
2) Ajop + @ o Ai = 20,
3) tr(Aj) = —2n.

Proof. Equality ant—O0 implies that A: is symmetric.
1) For any i,j €{l,...,s}derivingg (£, -, = Q[ with respect tolk using SIp = v&.{i,
we get 2g (Ek, Ai (€)))=0.Since v {3 € T= we conclude A, (f;) = 0.
2) Forany Z € T (TM), we have ¢ (N (¢i,2)) = (I¢.9) Z and, on the other hand, since
v &p = 0,
1€.9 = AJO(p- (POA]. @
One can easily obtain from (2)
AjX = -@2X - @/%X. 3)
Applying (1) with Y = &, we have

2& (PAIX, Z2) = —29 (¢X,Z) - g (¢N (i, 2), X),

which implies the desired result.
3) Considering local adapted orthonormal frame {Xi,..., X,,, 0XX, ..., ®X,,, E\,... £s}, by
1) and 2), one has

fAiI = t(S (AiX], Xj) +S (AifXj, X)) = =2 jr S (¢X,, <pXj)) = ~2,,.
/=1 /=1
[]

Proposition 2.2 ([1]). Forany i € {1,..., s} the tensor field hi is a symmetric operator and
satisfies

i) hi¢g] = 0, foranyje{l,...,s},
ilhjoe+@ohi = 0,
iii) trhi —O,

iv) trcphi = 0.

Proposition 2.3. v @ satisfies the following relation [6]:

(VXP) Y + (v UXo) (PY=Zi=‘i\~ (43/ (V) +  (X'#)iA) - HLY)  }. @
Proof. By direct computations, we get
ON (X, Y) + N (0X,Y) - 2¢ I?/r(X) hty,
i=
and
i// (N(<pX,Y)) =0.

From (1) and the equations above, the proof is completed. O

3 Almost Kenmotsu /-manifolds W ith { Belonging to the (k,Hd,v)-Nullity

Distribution

Definition 3.1. Let M be an almost Kenmotsu f-manifold, K,y and v are real constants. We
say that M verifies the (K, y, v)-nullity condition if and only if foreachi € {1,...,s},X,Y €
Ir (TM) the following identity holds

R(X,Y) & = k (4(X) 92Y - n(Y) $2x) +u(n (Y) h{X - n(X) h(Y)
+v(n(Y)erX-n(X)e"Y).

Lemma 3.1. Let M be an almost Kenmotsu f-manifold verifiying (k, y, v)-nullity condition.
Then we have:

G) ,ohj = ohi foreachi,j € {1,2,..., s},

(i) Kk < —1,

(iii) ifk < —1 then, foreach i € {1,2,..., s}, hthas eigenvalues 0, £a/—(K + 1).

®)

Proof. From (5) it follows that foreach X € '(TM), i,j € {1,2,..., s}
KELX)ET-oK(Ti,9X)&i = 2kp2X.
Using
W, X)&i - <pRMj, X)Ci = 2 [-92X + (hiohj) X

we obtain
(hiohj) X = (k+ 1) 2X — (hj o hj) X (6)

and then (i) is verified. Next from (6) we get
h2X = (« + 1) @2X, @

h}X = - (K +1)X, XeT(T>). @)

Then, using Proposition 2 and (8) we obtain that the eigenvalues of h2 are 0 and —(k + 1).
Moreover hj is symmetric: |I/IGX|R = —(k + 1) [IX|IR. Hence kK < —1. Finally let t be a real
eigenvalue of hj and Xbe an eigenvector corresponding to t. Thent2 ||X|g = —(k + 1) |IX|R
and t = £sj— (x + 1). Taking Proposition 2 into account we get (iii). O



Proposition 3.1. LetM be an almost Kenmotsu f —manifold verifying (k, y, v)-nullity condition.
Then

h = == hs. ©
Proof. If Kk = —1 then from (7) and the symmetry of each h, we have h\= == hs — 0. Let
now Kk < —1L. Wefixx € M andi € {1,2, .,s}.Since h, is symmetric then we have Vx =

{V+)x © (V-)x, where {V+)x is the eigenspace of /z corresponding to the eigenvalue A =
y/—k+ 1) and (D-)x is the eigenspace of /z corresponding to the eigenvalue —A. If
X € T then we can write X = X+ + X-, where X+ € {V+)x, X_ € {T>-)x so that
hjX = A(X++ X-). Wefix/ € {1,2,...,s}, ¢ i. Thenfrom (6) we gethjX = hj(X+ +X_) =
hj(jhiX+ —jhiX-) = j (hjohi) X+ +X_) = AX++ X-) = hjX. Taking into account
Proposition 2 we obtain (9). O

Remark 3.1. Throughout the paper whenever (5) holds we puth := i\— =m = hs. Then (5)
becomes

R (x>y) i = k(N (X) 92¥ - n(Y) 92X) +u (n (¥Y) hX-n (X) hY)
+ v(rf(Y)cphX —n(X)pHY) .

Furthermore, using (10), the symmetry properties of the curvature tensor and the symmetry
of p2and h, we get

Rfe,X)Y = k (n(Y)02X - g (X, Y2y) j) +p (g (X,hY) & - Tj(Y)hX)
+v(g(g>hX, Y -Ti(Y)<phX).

Remark 3.2. Let M be an almost Kenmotsu f -manifold verifying (k, y, v)-nullity condition,
with Kk ® —1. We denote by T>+ and the n-dimensional distributions of the eigenspaces
of A= NI—{k+ 1) and —A, respectively. We have that T>+and O- are mutually orthogonal.
Moreover, since @ anticommutes with h, we have ¢ (E>+) = X>_ and ¢ (T>-) = T>+ In other
words, T>+is a Legendrian distribution and V- is the conjugate Legendrian distribution of
V+.

Proposition 3.2. LetM bean almost Kenmotsu f-manifold verifying (K, y, v) —nullity condition.

Then M is a Kenmotsu f-manifold ifand only if Kk — —L

Proof. We observed in the proof of Proposition 3.1 that if kK = -1 then h — 0. It follows that
(10) reducesto R (X, Y) & = n (¥Y) 92X —n (X) @2Y. From [2, Proposition 3.4, Theorem 4.3] we
get the claim. O

4 Properties Of The Curvature
Let M (o, Ci,n1g) be a (2n + s)-dimensional almost Kenmotsu /-manifold. We consider
the (1, 1)-tensor fields defined by
hj () —K-Z&
foreachi,j € {1,...,s}and putZ= Iy

Lemma 4.1. Foreachi,j,k € {1,...,s} the following identities hold:

@oljio@—Iji=2 hiohj—@2 (12)

LLL ° 1ji = o, 13

Ne ) = o (14

VAIZ; = —@olii © (hj+hj) - @ohiohj, (15)
Wz, = —@ o lji —¢@ —2hj —cphf. (16)

Proof. Identity (12) is a rewriting of [7, (3.4)]. Formulas (13) and (14) are an immediate conse-
quence of (12). Next from (3) and o (VA./fy) =0w e get

ljj = (¢ + @2+ @oht+@ohj - hjo/(J.
Applying ¢ to both sides we get
= {-Y°hj-@-hi-hj- @ohjohi),
from which it follows (15). Finally, identity (16) is (15) when i = j. O

Remark 4.1. Let M be analmost Kenmotsu f-manifold verifying (k, 4, v)-nullity condition.
Then for eachi,j € {1,..., s} we have

lji = —k@2+ ph + vcph. a7
It follows that all the lji's coincide. We put | = ljj.

Lemma 4.2. Let M be an almost Kenmotsu f-manifold verifying (k, y, v)-nullity condition.
Then foreachi € {1,..., s}, the following identities hold:

VA/z = —u@h + vh —2h, (18)
lo —@i = 2uhg + 2vh, 19
o + @l = 2k, (20)

Q& = 2mk&. (21)

Proof. From (16), using (17), we obtain (18). Identities (19) and (20) follow directly from (17)
using ho ¢ = —@ oh. For the proof of (21) we fix x € M and {Ei,...,E2,+S} a local @

basis around x with E2n+1 = &, ---, Erm+s = £s- Then using (11) and trace (h) = 0 we get
2n 2n _2n

Qe - T R&eA- = T g(IEEjEPL= KZ il O
1= 1= J=1

Lemma 4.3. Let (M, o, {i, t]j,g) be a (2n + s)-dimensional almost Kenmotsu f-manifold. Then
the curvature tensor satisfies the identities

g(RIilXY.Z) = tni(Z)g{r2y,x) -t /;(Y)?(1'22' X)

M s M (22)
+1 m(z)g(9dp>x)~ t m(y)g (wd x)+s((Vz#,)y - (Vy#,)) z,X)
=1 M
and
g {K&xY,Z2) - g (KEXWY, WZ) + g (KEIEXY/ WZ) +g {40 XV Y>Z) (23)

= 29 (CVhiX9Q Y, Z) +2n (Z2) g (htX - oX, ¢Y) - 2n(Y) g (XX - @X, ¢Z)
foreachi—1,...,sand X,Y,Z €T (TM).



Proof. Using the Riemannian curvature tensor and (8), we obtain (22).
We introduce the operators A and B, z€ {1,...,s}, defined by

AX,Y,Z) = 2n(Y) g (eX, 9Z) - 2n(2) g (X, @Y)
and
Bi(X,Y,Z) := -g (X, (Vy (9 0/z)) (?Z)) - g (cpX, (Vy (p 0h{) 2)
- g (X, CVy (pohi)) Z)+g (X, (veY(poht) (92))
for each X,Y,Z € I' (TM). By a direct computation and using (22) we get that the left hand
side of (23) equals A(X, Y,Z) + B,(X, Y, Z) - Bt(X, Z, Y). Since
) Z) = Ay(Vy (hjZ))
we can write
Bf(X,Y,Z) = -g (X, @y (¢ohi) Z))+g (X, (poht) (VyZ))
+g (M VM (g»ohiog>) Z2)) +g(X,(<pohi) (VoYp2))
- S(UX>(Vy (9 0hi0cp)Z))+g (eX, (9 oh{ (Vy (<p2)))
- g (X, (V@Y (9 ohi)Z)) +g (¢X, (¢ ohj) (VoY (hjzZ)))
= —g (X, (Vy<p) (fcf2)) +* (XA - ((Vy?») Z)) (24)
+g (X, (hiog) ((vUYp) Z))+ 8 (X, ((VoYQ) (\,-2)))

+ i>y((V,yfci) 2)j/-(X)-
=1
Moreover, from (3), (4) and Proposition 1it follows that
Wo (Y)Y = (v exe2* Y - (v ox(p) (?Y)

= E ((y9#ij) W +E (vioO v @X{3)
7-1 =

- (v ox¥) (gy) = = ((voX) (8 (CI,Y))T
i=1

g (vexXy,li) {) + £ 7, (Y) (pX - X)
/=i

+E V00 hjX +n ) oX +2g (X,?Y) £+ (VXQY.

r=t
Hence
(9o (vXe))Y = _Zi((X,cpY) 1, —/£lg (Y'hjX) Si
J: =

+ 2E7;(Y)<pX+(Vx?y.
=1

Furthermore, from (4), foreach/ € {1,..., s} we have

{{'vethy) z) = o, (VTy (hjZ)) = (Vevni) (hjz)
= —g (hjZ,WeYZi) = g (hjZ,hiY - oY) .

Then, using (24) and (25), we get

Bi(X,y.Z) = —g(X,(Vy?) (h{Z)) +a(X,h{ ((Vy?) 2)) +2n (2) g (hiX, oY)
+g (hiX, @y?) Z) +n(X) g (¥, ?A.Z2) - £ n, (X) g (h{Z,hjY)
=1

+E  (X)S(Ne hjY) +* (X, (Vy?) (fc.2) - n (X) g (?Y, 12)
7=
= 2(g (hiX, (vyo) Z) +TI(2) g (fr.X, 0Y) - n(X) g (Y ,A,2)).

Therefore we obtain

A(X,Y,Z) +Bf(X,Y,Z) - B,(X,Z,Y)
= 2 (v yo) (hiX,Z) - 2 (v o) (hiX, Y)
+2n (2) g (hiX - oX, @Y) - 2n(Y) g (htX - ¢X, 9Z)

and hence (23) follows. |
Remark 4.2. Let M be an almost Kenmotsuf-manifold.Then from (23) using
(Vfc-xo) (v,Z2) = -g((Vhixp)Y,2Z) ,foreach X,Y,ZET (TM), we get
(VFtjX?) Y A {WKEIWXY - KZ,OXWY - WKEXWY - KIZiXY)
+g (h{X - X, oY) +n () (<AX - 92x) .

(26)

Lemma 4.4. Let M be an almost Kenmotsu f-manifold verifying (k, y, v)-nullity condition.
Then the following identities hold:

(Vx<p)y = g(cpX + hX, Y){ - n(Y)(eX +hX), @)

(Vxh)Y - (Vyh)X = (k+1)(n(Y)eX — n(X)eY + 2g(cpX, Y))
+u(N(Y)ehX-n(X)ehY) + (I-v)(n(Y)hX-n(X)hY).

Proof. From (26) we obtain
WV, Xi») Y= - (K+DgX,VN)E&+KK+Dn®) X +n(Y) fhX +g (hX, oY) ¢

Here we replace X with hX and by a direct computation, taking into account (3), (7), we get
(27). From (27), since h and @2 are self-adjoint, we have

(VX(@oh) Y- (Vy(eoh)) X = @((VXxh)Y- (Vyh)X).
It follows that foreach Z € T (TM)
g (Rxvii,Z) = n(Y)g (¥ x +VhX,z) - n(X)g (¢2Y + <phY,z)
+g(p((Vrl)X-(Vxh)Y),Z),



where we use (5) of [6]and (27). From (29) and the symmetry of h and @2t follows that
<p((Vyh) X = (Vx/i) ¥Y) = Tixyli —n(Y) (e2X + @iX) + n(X) (e2Y + ghvy .
Then, applying ¢ to both sides of the last identity using (10) and
M (CVyft) X - Cvxf)Y) = -2 (k+ 1) g (eX,Y), le{1...5s},
we get (28). O

Theorem 1. LetZ=(M, ¢,li,n], g) bea (In + s)-dimensional almost Kenmotsu f -manifold and
(9 ,&i,n") be an almost f-structure on M obtained by a V-homothetic transformation of
constant ac If Z verities the (K, Y, v)-—-nullity condition for certain real constants (k,u,v) then
[M, @, &, rjj,gj verifies the (k, y, v)-nullity condition, where

~ K ~ v
K= -, 4 =4 v= -,
(0 a @
Proof. From (18) and (9) it follows that hi = - - = hs. Then, using (27), by a direct calculation
we get the claim. I

Lemma 4.5. LetM be an almost Kenmotsu f —manifold verifying the (K, y, v)-nullity condition.
Then

X, YeT(VH " VxYeT(V+), (30)
X,y er(P-) =» Vxy€eTr(z>), (3
X € [ (V+), Y €r(V-) =VXYET (V- 0 ker (¢)), (32)
Xe IME>), Yer (V+) ==Vxy€ T (T>+0 ker (9)). (33)

Proof. From (28) we get g ((Vx/i) Z- (Vvzh) X,¥)= 0, for each X,¥,Z € ' (V+).0n the
other hand, since h is symmetric, from Remark 2 we have

g (Cvxh) oZ - @ ozH) X,Y) = -2As (Vx (9Z2),Y).
Then
g (PZ Y XY) = -g(Vx(<p2),Y),

iie. Vxy is normal to V-. Moreover from (3) and Remark 2 it follows that, for each i €
{1/---/S}, g (Vxy, Ci) = —g (Y, VXE() = 0. Then we have (30). The proof of (31) is analogous.
If X € T'(E>+), Y € T (V-) then from (30) and Remark 2 we get that for each Z € I (T>+)
g(Vxy,2Z) = —g (¥Y,VXZ) = 0and then we have (32). Analogously we prove (33). O

Remark 4.3. It follows from (30) and (31) that T>t define two orthogonal totally geodesic
Legendrian foliations F== on M.

Lemma 4.6. LetM be an almost Kenmotsu f-manifold verifying the (k, y, v) —nullity condition.
Then for each X, Y € '(TM) we have

(Vx/) Y = (K+ D)g(<pX, Y )I-g (fix,¥) & - n(¥Y) h (X + 1,0X)
- pn (X) <phY + (v - 2) n(X) hy. Cs

Proof. Letbe X,Y €' (V). From Proposition 2, i) we getg (hjY, £ = 0. Taking the derivative
of this equality of the direction X we obtain

(Vx/2Y = —g (Y,hjX + hjcpx'j &].

Then, we write any vector field X on M as X = X+ + ni(X)&/, X+ denoting positive component
of X in V, and, using (18) and (8), we have

@ xh) Y = @ x+h) Y+ +n (Y) @ x+h) { +Ti(X) {-ypH +vh- 2h) ¥
- g (v, HX +HeX) -1n(Y) (hX +h2cpX) +n (X) (-pehY +vhY - 2hY).

L]

Remark 4.4. LetM be an almost Kenmotsu f -manifold verifying the (k, 4, v)-nullity condition.
Then using (27), (34) and (8) we get, forall X, Y € '(TM)
(Vx#) Y= (k+1)* (¥YX,y) T+ g(<pXhY)1-n(Y)yhX

+ (k+1)n (¥) @2X +un (X) hY + (v - 2) n (X) <phY.

Lemma 4.7. LetM be an almost Kenmotsu f-manifold verifying the (k, y, v) —nullity condition.
Then for each X,Y,Z € I (V) we have
RXYhZ - hRXYZ = s[k{# (Z, oY) X - g (Z, Y) cphX - g (Z, 9X) Y +g (Z, 9 X) oHY
+9(Z,X) 0Y - g (Z, 9KX) @Y - g (Z,Y) X +g (Z, tphY) oX}

+8iz'(pY)Xx-g (z>Y) shx - g (z/<EX)Y +g (z/px) Jby (36)
- g(Z,hY)X +g(Z,hY) cphX+g (Z,hX)Y -g (Z, NX) <phY

-g(Z, X)hY +g(Z,X) pY+g (Z,cphX) hY —g (Z, cphX) @Y
+g((Z,Y)hX —g (Z,Y) o X- g (Z, o/TY) IzX + g (Z, <phY) X\

Proof Let X,Y,Z € I'(TM). Then by a direct computation we get
(VXVyh)Z = K+ D[g CVXZ, 9N ?.+g (Z, mxo)Y)f +g (Z,? (Y XY))
+9(Z,9Y) (92X - cphX)]- g (VXZ, hY) & - g (Z, (VxIQY)
-g(Z,h(VXY))C +g(Z,hY) (2X + <p/zX) - g (V xZ,f) (Iy + i2"y)
-g(Z,VX?) (Y +/r2<pY) - n(2) (Vxh)Y -n (2) h (VXY)

(k+1D) NEZ) (VXPY+n(Z) (YXY)] - U8 (Y XY,?) 9z
=g ,v X0 cphz-n (Y) (VX(h) Z - 7 (¥) gh(V X2)]
+ (V-2 [gYXY,NhZ+g (Y, Vx?) AZ+ n(Y) (Vx)Z +rj(Y)h (VX2)],

where we used (34), (8) and the antisymmetry of V x<a Hence, using the Ricci identity

RxyhZ —hRxyZ = (VxVyh)Z —(VyVx/2) Z — (v [xY]h Z,



formulas (34) and (3), the symmetry of Vx (h o ?), we obtain

RxyhZ - HKxyZ = (k + 1) [g[Z, (Vx?) Y - (Vy?) X)C - g (Z,?Y) (?2X + cphX}
+g(2,<pX) (?2Y +9hY)]-9g (Z, (Vxfc) Y - (Vy/H) X)E +g (Z,hY) (?2X + ?fcx)
-g(Z,hX) (?2Yy +?21ay) - g (Z,VXD (/zY + /2?y) +g (Z,Vy?) (/zX + [2?X)

-n@) (VxfY - (VyN) X) +« +1)j/ (Z) (CVx?)Y - (Vy?) X)
+ U8 (X, VyE) - gjY,VXE)) 2/iz - 7 () (Vx?2) Z +7 (X) (Vy?/z) Z]
+ V-2 {g®,VxD -g (X,VyE)) hZz +n®) (Vx/Zz — (X) (Vy/z) Z].
(37)

If we take X,Y,Z € I' (V) then from (37), using identities (35), (27) and (8), we get (36). [

Lemma 4.8. LetM be an almost Kenmotsu f-manifold verifying the (k, y, v)-nullity condition.
Then for each X,Y,Z € '(TM) we have

KXYWZ - @OXyZ = [K(tj(Y)g(<pX,Z)-ri(X)g(<pY,Z))
+ 1 (v00 g (sphX, Z) —n (X) g (1Y, 2)) —v(n ) 9 (hX,Z)-n (X) g (hY,2))JE
s[-g (Z,?Y +hY) (?2X + (phXj —fg (Z, ?X +hX) (?2Y + ?/CY)
+g (Z,?2X + (X (?Y +hY) - g (z, ?22Y + gphy) (?X +/2X)]
-7@2) kK(n ) ?X = 7(X)?Y) +/i(n (Y) ?2/zX - n(X) ?2/zY)
—Vv (n (¥) hX —n (X) /zY)].

Proo/. We proceed fixing apoint x € M and local vector fields X, ¥, Z such that VX, VY and
V Z vanish at x. Applying several times (27), using (8) and the symmetry of V ?2, we get in X

Vx((Vy?)Z)-Vy({(Vx?)Z)
= [g((Vx?) Y - (Vy?) X,Z2) +g ((Vxfo Y - (Vy/z) X,Z)]Es
X [0(Z, ?X +ftX) (?2Y + 2/zY) - g (Z,?Y +hY) (? 2X + 2/zx)
+g (z,?2X +?/ix) (?Y +hY) -g (z,?22Y +?/zY) (?X +ftX)]
- 7(2) [((vx?) Y - (Vy?) X) + (VxTQY - (Vyh) X)].

From the last identity, using KxyyZ - (pPRxyZ = Vx (Vy?) Z - Vy (Vx?) Z and (28), we
get the claimed identity. |

Remark 4.5. In particular, from Lemma 9 it follows that for a Kenmotsu f-manifold
(M, ?.£,-, T-,0) the following formula holds, forall X,Y, Z € '(TM),

RXYpZ - oKXyZ = (n (X) g (?Y,Z) — (¥) g (?X, Z))
(Z, 9Y) 92X + g (Z, X) 92Y +g (L, /rXj oY - g (L, 92y) ¢X]

. =7(Z2) (OI00 Y X -n(X) YY)}
VATV X" o v AV =

Theorem 2.Lei M be an almost Kenmotsu f-manifold verifying the (k, y, v)-nullity condition
withk < —1Thenfor each X+, Y+,Z+€ T (E>+), X_,Y_,Z_ €T (X>-), wehave

KXy Z+ =s(k+ 1) [g(?Y_,Z+)?X_ -g(?X_,Z2+)?y_]
+sA[g(?X-,Z+) Y- - g (?Y_,Z+) X_],
KXHy+Z+ - s[g(X+H Z+) Y+ - g (Y+, Z+) X+]
+sA [g Y+, Z+) ?2X+ - g (X+,Z+) ?Y+],
Rx+Y+Z- = SA[g(Z_, ?Y+) X+ — g (Z_, ?2X+) ¥+]
+s(k+1)[Q(Z_, ?y+) 72X+ - g (Z_, ?X+) <pY+],
Rx+Y-Z- = —sg (¥Y-,Z_) X+ +s(k+ 1) g (?X+/Z2—)?Y—
+sA[g(Y-,Z ) ?2X+ -g(?X+,Z ) Y-],
Rx+Y-Z+ = sg (X+,Z+) Y_ -s(k+1)g (?Y_,Z+) ?X+
+sA[g(X+,Z+) ?Y- - g (?Y _,Z+) X+],
Rx-Y-Z- = s[g(X-,Z_) Y_ —g(Y_,Z_) X ]
-SsA[g(Y_,Z ) ?X_-g(X-,Z_)?Y_].
Proof First of all, for any X+, Y+, Z+ € V +, applying Lemma 7, we get
AKX+HYHZ+ — hRXHYHZ + —25A2 (g(Z +Y+) ?2X+ —g(Z+ X+) ?2Y+)
and by scalar multiplication with W_ € V-, one has
2A (Kx+y+Z+W ) =2sA2(g(Z+YHg(?X+W )-g(Z+X+Hg(?Y+W ))
from which, being A*O,
(Rx*rtZ+W_) = sA(g (Z+,Y+) g (@X+,W-) - g (Z+ X+)g (yY+,W ). 42
With a similar argument, for any X+, W+ € P+ and Y_,Z_ e P -, we also obtain
(KxtY_Z_,W+) = (ic+ 1)s(g(Z_,4X+)g (i<y_W+)-g(Z",y_)g(X+WH+)) (43)
and, from (42), by symmetries of the tensor field R, for any X+, Y+ W+ € andZ_ €P-
(Rx+u+Z-, W+) = sA(g (Z_, ?Y+)g X+, W+) - g (Z_, ?X+)g Y+, W+)). 44

Next, fixed a local ?-basis {ei,... ,e,, ge\...., ?e,,,£i,... ,£s}, with e« € T>+ we compute
Rx+y+Z . The nullity condition implies g (Rx+y+Z_ ,£,) = 0, while using the first Bianchi
identity, (43) and (44), we get

g {Rx+y+Z-,et) = As(g(Z_,?2YHg(X+i,) —g(Z_,?2X+H)g(Y+, <),
g {Rx+y+Z-, (pgj) = (k +1) s(g (<pZ-X+) g (Y+/ei) -g(<pZ-,Y+)g(X+,ei)),
so that, summing on z the expression for Kx+y+Z_ follows.

The terms Rx y Z+and "x+y, Z_are computed in a similar maner. Now, acting by ? on
the formula just proved and using Lemma 10, we get

RX+y+@Z-=s (g (?Y+,Z ) X+ -g (?X+,z_ ) Y+)-sA (g (?y+.,Z_ ) ?X+-g (?X+,Z_ ) ?Y+).

Writing this formula for ?Z _, by the compatibility condition, we have the result for Rx+y+Z+.
Similar computation yields Rx_y Z-. Analogously, using the third formula and Lemma 10we
obtain RX+Y_ZH_;' ———————————————————
iveHi Baowma CredeHvika
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Now we are able to compute sectional curvature.

Theorem 3. LetM be an almost Kenmotsu f-manifold verifying the (k, y, v)-nullity condition
with Kk < —1 Then the sectional curvature K of M is determined by

K (X,« = Kg(X,X)+fg (AX,X) +vg (@,X,X) = | *+A *x | (45)
s i/X,Yel>+,
K (X,Y) s if X, Y e * D (46)

-s-s(k+ 1) (g(X,?y)) ifX € £>+, Y€ £>-.

Proo/. ldentities (45) follow directly from (5), while identities (46) are consequences of (38), (41)
and (39) respectively. O

Corollary 4.1. LetM be an almost Kenmotsu f-manifold verifying the (k, 4, v)-nullity condi-
tion with kK < —1. Then the Ricci operator verifies the following identities

Q=s (-2)@2+pH+ (2(n - 1) V) (cpoh) +2nNKN®¢, 47)

Qocp —q)oQ = Zs [liho @ + ((n - 1) +v) h]. (48)

Proof. Let {e\ ...,en, eN\..., gen,&1,..., £s} be a local <p-basis such that {er, ..., <2} is a basis
ofV.(and letX = X++X_ € V+ 0 £> . From (38), (39) and (10) we get

QX+ = s(—2+ PA) X+ +s(2A (n —1) Fv) eX+. (49)
On the other hand from (40) and (41) we obtain
QX+ = s(-2 - PA) X+ - s(2A (n - 1) +Vv) X +. (50)

Taking into account (49), (50) and Qf,- = 2nk&, we get (47). Finally, identity (48) easily follows
from (47). O

Corollary 4.2. LetM be an almost Kenmotsu f-manifold verifying the (k, g, v)-nullity condi-
tion with kK < —1. Then the scalar curvature of (M ,qg) is constant and verifies the following
identity

S= 2ns (k (2—n) —2n). (SYW)]

Proof. Let {e\....,en, @By, ..., gen,&,..., £s} be a local <p-basis such that {e\.... ,en} is a basis
of V+ Then from (38), (39) and (5) we have

g {Qei, ei) = ksn + pyAsn - s(k + 1) n2- sn2. (52)
Furthermore, from (40), (41) and (5) we get
g (Q@pef, gel) = ksn — pAsn - s(Kk + 1) n2 - sn2. (53)

Then (52), (53) and (21) yield (51). O

5 Examples

Example 1. Let R2+S be (2n + s)-dimensional real vector space with standard coordinates
(*i, ---/%n/ /i, - -myurz\, ---/28) and

M = {(xi,....xn,yi,...,.tUn,ZL,...,z8) g ® 0, 1<i<s neN, n>1}

be a (2n + s)-dimensional manifold. Foreachi= 1,...,nandk= 1,...,s
X, = (-<*+1)xv W [)2-"~) A +,*]j.

Yi= (zi +1£\J(@zi + 1)2+e2> A,

* =],
¢ dzj
is a basis of M.
Then, foreachi,j = I,...,n and k= \,...,swe obtain
[X,V,] = i* (2zf+ 3 +2**") [V, Y] = 0,

[Xifi] - (i +3+rez) 30 ezto(, [YK] (2z,—+ 1+ 2e27)

[Xi, X/1= -«* 2z, +3-2~) A + (2z,+3-2") A .

0
I/ we take ni = o , we gei
g=E  —mmmmmmme Ml 2 r— +EAY
=1 VG +1)+V (¢ +1) +e2 +1)+V (2/+1) +"2 / =1
a\ a
'/
a\ a ez'

3yi) X 2@+ 1)+ Y (22/+ 2)2+ 422467

Then, we have an almost metric f-structure (g>%j,t]i,g) on M. On the other hand, for each
i=1,...,5 we obtain dni = 0. Moreover

¢ = r= | 7
g VOX/ «hyi) (z.+1)x MN(Z.+1)2+" Nz +1D) +N (( +)2+e2x

and foreachi,j = 1,...,s®/; = 0. Then we gei

" =27 ,€'N) =
dxi A rfi/z,
+D)xNZi+1f +e2n Mzf+D) +N(zi+ 1 f +e



and and

Gp =22 dZjA (Z dANI = 2NN, # =2E 12N E dxiAdyiJ= 2rfA ®.
j=1 \i=l / /=1 Vel /
Since the Nijenhuis torsion tensor of this manifold is not  equal tozero andinview of this

) i Since the Nijenhuis torsion tensor of this manifold is equal to 0 and in view of these expres-
expression we get an almost Kenmotsu f-manifold.

sions we get a Kenmotsu f-manifold.

Example 2. Let R2+S be (2n + s)-dimensional real vector space with standard coordinates
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4\ d z? 5

ayi)  dxj 2+ \A4+ 4e27 dz,

Then, we have a mefric f-structure (o, gy,//,,g) on M. On the other hand, foreachi = 1I,...,s
we obtain ii//, = 0. Moreover

i O d
N\oxi byi) (-1 + (I £vT
and foreachi,j = I,...,s &y = 0. Then we get
n f 3 3 A 1

L )) _ ~T r X [-——=; v ax A dyi,
Yi 1+ N/l +e2zi* M = \N/I +
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Let TP denote the p-dimensional torus (R/2nzZ)P, T>0, Q? — (OT) x TR,
MNn = {N = (Aj.... A) €C" : Ao Aiff ¢ j], Dx = (~ig/oxr........ -in/nxp),
k= (KN...)kp) € ZP, = R\]+ ... + Np\B(DX) is differential expression such that

BNN\,N2e R, C\Cr>0: (VkezP) Ci(l + N < N\BRN\ < C2(1 + \QNN* (D)

We use the following functional spaces: Hq= Hq(TP), g e R, is Sobolev space obtained by
completing the space of all finite trigonometric polynomials

AX) = exp(z’/c, X)

by the norm

eZP
Let us denote by Cg([0, T];Hq), n € Z+, ©€ R, space of functions

keann = (2 G+w TiM2)

u(t,x) = N uk(t) exp(ik, x)
kezP

such that for any fixed point t € [0, T] function
dhi(t, x)/d>= X u'-p(t) exp(ik, x)
keZP

belong to the space H@Zy0,j = 0,1,...,n, and it, as an element of this space, is continuous in t
on [0, T]; the norm in CL([O T]; H?) is defined as follows

IUCS(I0O,TH;H)Ip = £ max [lyB(i,i)/3(<;H " | 2
y=OtEI0Ti

© Vasylyshyn P.B., Savka l.Ya., Klyus LS., 2015

In the domain Qp we consider the following problem:

L(d/dt,Dx)u =Ll | - AB(Qxn u(t,x) =0, (t,x) €QMn, (@)
. / xdi- diLuQ,x) . S
LU= =M 1) t] No= (X)), XEIP,j=1,.,.,n, ©)
where (Ai,..., An) € Il,,, the real-valued coefficients H\...., y,ndepend on parameters T, T €

I, where 1lis an arbitrary fixed segment of the line R, t\.... ,tmare the points of the interval
[0Tl,and 0= fi < t2< ... < tm\< tm= T.

Solvability of boundary value problems with multipoint nonlocal conditions for parabolic,
strictly hyperbolic, typeless and pseudodifferential equations studied in works [1-4,6-10].

The problem (2), (3) belong to a class of incorrect problems by Hadamard and its solvabil-
ity related to the problem of small denominators. In the assumption when the coefficients
MtL,..., y,nare independent correct solvability of the problem (2), (3) follows from the results
of [10, §14]. If the coefficients p t,..., y,nare dependent, then these results will not be used to
proving solvability of the problem (2), (3). It shoud be noted that two-point nonlocal problem
for partial differential equation of the n-th order with conditions (3) was investigated in [11]
for the case of two-point nonlocal conditions (m = 2).

In the paper we found that the conditions of correct solvability of the multipoint nonlo-
cal problem (2), (3) in the scale of Sobolev spaces are fulfilled for almost all (with respect to
Lebesgue measure in the space R) numbers Tt € I.

The solution u to the problem (2), (3) has the form of a Fourier series

u{t,x)= £ uk(t)exp(ik,x), )]
fcezP

where function Mfc(f), k € ZP, is a solution of multipoint nonlocal problem of ordinary differ-
ential equations:

L(d/dt,k)uk(t) = O, ®)

LjUk(t) = qik, i=1,.,.n. ©)

Here, gk are Fourier coefficients of the function (pj(x),j = 1,... ,n.

For each fixed k € Z? let us construct a solution to problem (5), (6). Since the (Aj,..., A,) €
Mnand coefficients B(k) satisfy the condition (1), the equation (5) for each k € ZP has the fun-
damental system of solutions {eAB®@f, ..., eKB(K)ty x"en the general solution of the equation
(5) has the form

Mfc(0 = clfcexp(AiB(fc)E) + ... + crkexp(AnB(k)t),

where constants cik, ..., crkare determined from conditions (6) with the help of the system of
linear equations

1 m m
NN = M T) exp(AiB(K)tr) +cAA2 ~ pTHT) exp(A2B(k)tr)
r=i r=i )
m v'
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Determinant of the system (7) is factorized and represented by the formula

s=1
where
m
Hh3k(T) = EMr)exp (AsB(/c)fr),
r=1
W'A) = I'IB (Aa —A«) is Vandermonde determinant constructed from different numbers
I<o<B<n

Ai,...,A,,, hense W(A) ¢ 0.
If I‘I1 ®5(t) 7-0, then
Ss=

Here we denote by W/s(A) the Vandermonde-type determinant obtained from the determinant
W(A) by crossing out /-row and s-column.
r|
Thus, the solution to the problem (5), (6) under the condition N & ~ (1) (DO is unique and

s=1
has the following form

» (=) sHWis(X)BI ~i(k)

uk@® = I —— w(A)P4Ai(T)-—— "  exP(ASB(K)D), ke ZP.(8)

Conditions for uniqueness of the solution u of the problem (2), (3) follows from the theorem
on uniqueness of Fourier expansion of a periodic function and from conditions of uniqueness
of the solution uk(t) of the problem (5), (6) for each k € ZP.

Theorem 1. For uniqueness (at fixed parameter 1) of the solution of the problem (2), (3) in the
space Cq([0, T]; H?) itis necessary and sufficient that for all k € ZP

()P (T)...-P,,*(T) @ O 9

If the condition (9) holds, then the formal solution of the problem (2), (3) is represented by
the formula

U(t x ) = L - e A4 4T ) otV exp (A ,B (<:)i + (iM ) (10)

Expressions ®1/6(")/®P2A(t)/ - - -/®nk(r) influence the convergence of the series (10), which
determines the norm of the solution of the problem (2), (3) in the space C$ ([0, T]; Hg). This
is explained by the fact that the denominators ¢y (1), P2 (1),...,PKT), K € ZP, although
non vanishing by the condition above, can arbitrarily rapidly approach to zero for infinite set
of vectors k e ZP. Therefore, the existence of the solution u of the problem related to the so
called problem of small denominators.

To solve this problem we use the metric approach [5] to estimations from below of small
denominators.

At first, we formulate the corresponding theorem from the work [12].

Theorem 2. Let
F(T,2) = 7i(t)Zy + ... +fm(r)zm,

wherez - (zi,...,zrd) € Cmand { } C Cm(I;IR). If the Wronskian W [/i,...,fm] of
the functions fmis not equal tozero on theinterval i CR, then forall z ¢ Cw\{0} and
an arbitrary € € (0, Ci |1/2), the following evaluation is valid

meas{r € i : |F(t,2)] < €} < C2""y/e/X\

where \= XN 4-... + N} positive constants C\and C2 are defined by formulas

1 m m -1

1~[/i, -./m] O] (’F'I /) lle("-2(G:IR) E II/ijIc(«—i)(/;]R)j '

c2

AN2+ D)(rn - DCi/(A-mM(meas| max N9 |IE7;R +Q ).

Theorem 3. If Jir€ Cm(l), r = 1,..., m, and Wronskian IN[u\...., yTNof functions pt,..., y,n
is not equal to zero on the interval I, then for almost all (with respect to Lebesgue measure in
the space R) numbers T € | evaluations

o5 ()] > Wcf7 max (l,exp(ReAsB(fc)T)), s=1,...,n, 1y
are satisfied for all (exceptperhaps a finite number) vectors k € ZP for7 > p(m —1).
Proof. For fixed swe introduce the sets
BE= {T € I: |P<*(D)] < €K}, ke ZP,

and the set Bs of such points T € I, for which infinite times on Z P the estimate is true

[P (D)] < — max (l,exp(ReAsB(fc)T)), &> 0.

If z(s,k) = (eABMi,... ,eAB0M), fj(T) = p/(T) forj — 1,... ,m, then from Theorem 2
follow the equalities:

F(T,z(s,k)) = dBqT), W [/i,....,/m]=vi[pl...,u M\
Since
s\ = 1+ pAsE(fo)i2) brsEfomi] | | lersBEGT] > max ~ exp(ReAsB(/c)T))

for all k € ZP \{0} and the inequalities are fulfilled

0< fk< y max (l,exp(ReAsB(fc)T)) < ™\z(s,kK)\

then for each k ¢ 0 by conditions of Theorem 2 we have the following estimation for the
measure Bk

measB{ < C2  ek\ZsK\ < C3|*I")/(T-1), C3=C A~ ) 1r"A



For selected 7 >p(m —1) series > measBKk is majorized by the convergent series
kezP\ {0}

C3z X] \Xs/(P-i>= Then from the Borel-Cantelli lemma follows that Lebesgue measure of
k€ZP

the set of points r from I, which contained into the infinite number of sets BE, is equal to zero

for fixed s. Thus, measBs= Oforalls= 1,..., n.

Therefore, when 7 > p(m —1) for almost all (with respect to Lebesgue measure in R) num-
bers T e / inequality |oNT)] > rk s —1,..., n, is satisfied for all (except for a finite number
of) vectors k. The theorem is proved. O

Theorem 4. Let the condition (9) is valid, meiln\LlJ,u,\,..., ur](x)|> outeCT(l),r=1,..., m,
T

and q € H™N(,,yj+7/ where 7 > p(m —1),j = 1 ,n. Then for almost all (with respect to
Lebesgue measure in the space R) numbers T € | there exists a unigue solution of the problem
(2), (3) in the space C*2([0,T];Hqg), which is represented by a series (10) and continuously
depends on the functions <3,j = 1,..., n.

Proof Taking into account, that

W/s(A)

W) M 17 = M1 (A),

on the basis of formula (10) and estimations (1), (11) we obtain the inequality

lIKCIb(O, TI;H,) IB< M2£ |uH,+THN|@_,, f,
M

where M2 = 2NY'n3(n + DMNCN\N\n, Y = 1max IAS} The proof of the theorem is
<s<n

complete. O
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BcTaHOB/1EHO YMOBU KOPEKTHOI PO3B'A3HOCTI HE/10KasIbHOT 6araToTo4KoBOI 3a4a4i Ans paKTo-
pY30BaHOr0 PiBHAHHSA 3 KoegilieHTaM1 B YMOBax, L0 3a/1eXaTb Bif 04HOr0 AilACHOro napameTpa.
lMoKa3aHo, L0 Lii YMOBM BUKOHYHOTbLCA HA MHOXWHI MOBHOI Mipn Jleber'a Bigpidka napameTpiB.
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HEMEPEPBHO-AVN®EPEHLINOBHI PO3B'A3KW OAHIET TPAHUYHOT 3AAAUI
ONA CUCTEM NIHINHNX ON®EPEHLIANBHO-PISHULIEBUX PIBHAHb
HENTPA/IBHOIO TUNY TA IX BAACTUBOCTI

BcTaHOB/1EHO A0CTaTHI YMOBW iCHYBaHHS HernepepBHO-ANMEPEHLIFA0BHNX | 06MexXeHnX nNpu t €
K+ po3B'A3KiB 04HIel rpaHMYHOI 3aga4i 415 cUCTEM JiHIAHWX AndepeHLiaibHO—PI3HMLEBMX pPiB-
HAAHb HEATPa/IbHOIO TUMY 3i CKIHYEHHOK KiIbKICTHO MOCTIAHMX BiAXWIEHb apryMeHTY, 3arnpornoHo-
BaHO MeToZ, X nobya0BU Ta A0CAIAXKEHO aCMMATOTUYHI B1aCTMBOCTI TaKMX PO3B'A3KIB.

KrtouoBi crioBa i hpas3n: HemnepepBHO-AMGMEPEHLLIAOBHNLA 06MEXEHNIA PO3B'A30K, rpaHMYHa 3a0a-
ya, cucTema MiHIAHNX gydepeHLiaibHO-PI3HULEBUX PIBHAHb HEATPa/IbHOIO TUMY.
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Y [aHilA cTaTTi po3rnisfacTbes cucTema piBHAHbL BUMSAY

k K
X'(t+1) = Ax'(t) + £ Am)x(t+am + = + Bm) + F(t), @
m=1 m=1
ge A — crtana (n x n)-martpuuys, Am(t), Bmt), m — 1 — HenepepBHi npu

t € IR+ = [O,+00) (N X H)-MaTpuui, cct > 0, Bn> 0, m — 1 F(t) — HenepepBHa npu
t € 1R+ BeKTOp-PYHKL,ist pO3MIPHOCTI M. 3ayBaXXUMO, LLLO CUCTEMU BUTNISQY

*(£ + 1) = Ax! () + F(t, x(t), X (f(1)), X' (g{t))), @

Oy In NpegMeToM po3rnsny 6aratbox mMatemaTukis [1, 2]. Mpu ybomMy, AK NpaBuUsI0, BUBYHAIN-
Cs 3a4adi, SIKi XxapakTepHi 415 3BUYalAHNX AngepeHUia/ibHUX PiBHAHb — iCHYBaHHS | EOVHICTb
po3B'sA3KiB 3agaui Koli, 0cCHOBHOT MOYaTKOBOI 3a4ad4i, pi3HOro poay KpaloBmx 3agad. Ase npum
L0CNioKEeHHI TakuX PiBHAHb AY>Xe 4acT0 BUHUKAE HEOOXIAHICTb B A0CNIMAXEHHI 3a4a4, AKi Bpa-
XOBYIOTb iX crieumngiky. OgHa i3 Takux 3a4ad nonsrae B A0C/iA>KEHHI NUTaHHA Npo iCHyBaHHSA
HenepepBHO-ANGEPEHLIAOBHUX NpU t € R +p03B'A3KiB cUCTeEM (2), AKi 3a0BO/TbHAIOTbL YMOBY

Nim [x(t + 1) - Ax(t)] = O. ©)

30KpeMa, B [3, 4] y Bunagky Ko A = E Ta [5] npu detA @ 0 BMBYasiaca CTPYKTYpa MHOXUHM
HenepepBHO-AntepeHLiiA0BHUX Npu t € JR+ po3B'A3KIB rpaHUYHOI 3agadi (2), (3).

B paHith po60oTi A0CNIMKYETLCA NMNTAHHSA ICHYBaHHSA HenepepBHO-AUMEPEHLLIA0BHUX | 06-
MexeHux npu t € IR+ po3B'askiB 3agadi (1), (3) y BunagKy, Kosiv BUKOHYOTbCA HacTYMHI yMO-
BUI:

© Benbray A.B., 2015

+00
1) / F(r)dr < M, IF(t)I< M, npe M — pesika flofaTHa cTana, t € R +,

t
+co +00

J NANMON\IT < dm JAm@A] < um J [Br(M]rit < bm |Bnf)] < bm
t t
m=1 ,kt€ER+¥

2) uy-1U'<i,d = mn4zTr(E Un+ E bm) <L
1 U= 1

" I m =

[ns po3s'asaHHA 3agadi (1), (3) gocTaTHLO, 0MEBUAHO, A0BECTMU, LLLO CUCTEMA IHTErpPasIbHUX

PiBHSHb
+°° K K
x(t+1) = Ax(t) —i (E AT(T)x(T+@)+ E BT(T)x'(r +pm) +P(1))"1 (]
i m=l m=1

Ma€ HernepepBHO-AMNGEPEHLIA0BHNIA Npu t € 1R+po3B's30K.
Mokaxemo, Wwo cucrema (4) mae po3B'a30K y BUrNsaa4i pagy

(0 = E_*<(Y ®

ae xj(t), i = 0,1,..., — AesKi HernepepBHO-ANMEPEHLIFA0BHI NMpn t € 1R+ BEKTOP-(PYHKLLI.
[LitAacHo, niactasnsawoum pag (5) B (4), 0OTPUMYEMO

® gl TPy
Ex, (i+1)=nE*;(0- / (E N1(7)™Xi(T + 1)
i=0 i=0 [ m=1 1=0

K 00

E B"(1) Z_xi(t+p™ +T(tn at
m=1 1=0

3Biacu 6e3nocepefHLO BUMNJMBAE, W0 AKLL0 BeKTOp—(pyHKLUii Xi(t), i = 0,1,..., € po3B'a3kamMm
noc/1if0BHOCTI CUCTEM PIBHSAHb

+00
xo(t + 1) = AxO(t) - i P(1)dr, ®)
k k
Xi(t+ 1) = AXi(t)- [ (E AT(T)XiA(T +am)+ E Bm(T)*i-I(T + "m))dT,
N mAl m=1

To pag (5) € hopmMasibHUM PO3B'A3KOM CUCTEMMU PIBHAHDL (4).
Cucrtema piBHSHb (6) Mae (hopMasibHUIA PO3B'A30K Yy BUMIA4l psay
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AKUIA BHAC/IA0K YMOB 1), 2) piBHOMIpPHO 36iraerbcsa npm t € R + pa3om i3 CBOEKD MOXIAHOLO i
BUKOHYIOThCSA YMOBU

MOT < 4 1401 < A ©

oeM = Ockinbkn npu i = 1,2,... pagn

+H / 4
*I(0 = 2 AN~(H) /(Z K4 (T)ii-i(T +am)+ £ BI'(?«(T))(-_l(T + B])“; (10
j=0 ;. m=l =l !

-
€ (hopMmasibHNMM PO3B'A3KaMM BigMoBigHUX cUCTEM PiBHAHB (7) (B LLbOMY MOXHa NnepeKoHaTu-

cs 6e3nocepeaHbOO NigcTaHoBKo (10) B (7)), TO 3a/IMLLAETBLCS MOKa3aTW, L0 BOHM PIBHOMIPHO
36iratoTbes npy t € 1R+pa3om i3 cBOIMM NOXIAHVUMU | BUKOHYHOTbCA OLLIHKW:

XMl < MA>,  |x@®] < MAI, i=1,2,.... (11
Cnpasgi, npn i = 1 Maemo

o

@
MOT ~ E}A’\\Hl 1:_!._(%<__|1|AT(T)||xo(T+aT)| + %; l‘Br ONNO(T + B,n)\)aT

09) k k +
< ATEIA_1L+1(Z / JA>n(MN\GT + =/ \B>n(1)\a1)
70 m=lI H m=1,, m
_'-j
oy k k
\A ) MA,

1 - |n-

k k

M@I< E W 11 Z 1-mi+ N POt +/+ )l + X NBrft+j) 10N+ Y+ Bi
H> m=1 m=l|

k k
< M7:£0|/| 1+l (mzzl §+mzzl bﬁ) < MA

i, oTXe, oyiHKM (11) MaloTb Micue. Po3MipKoBYOUM MO iHAYKLiT, MPpMNyCcTMMO, W0 ouiHKa (11)
[oBefeHa yXxe as1a ageskoro i > 1, i NoKaXkemo, L0 BoHa 36epiraerbca ana i + 1. [iticHo, Ha
niacrtasi (10), (11) i ymoB 1), 2) 0oTpUMYEMO

K K
IXi+i(01I<EN 1/ (= IMAOIX(E +cnn)\+zl\an(r)\\x(T -FBY)‘I
J= £
© _ k H° k O
<EH _1I'+tlps'"" (£ [/ p,(T)]<it+£ !/ B, (T)]iTt)
M m—1{—4I;J m=Il H
k k
—MA'TZTTTT(%:\» +m§II")l MA'+1>
/ K
I*i+1 (0l < E M T 4 E TA«{(+NIM<+/+*)] + E iB»(<+;)IH(<+i+Mi)
7=0 =1 - =

4-1
<ma‘r 4@‘1ii(E a"+ E »») £ QA+
- w=1 T=1

OTxe, cuctemm piBHAHL (7), i = 0,1,..., MalOTb HerepepBHO-ANMEPEHLIAOBHI Npu
t € 1R+po3B'asku X;(£), i = 0,1,..., y surnagi pagis (10), i = 0,1,..., 9Ki piBHOMIipHO 36i-
raloTbcs rnpu Beix t € 1R+, i 3a80BoNbLHATL yMoBy (11),i = 0,1, — 3Biacu i ymosm 2) 6esnoce-

peaHbo BUNAMBaE, W,o psg (5) (pa3om i3 CBOE NepLl o NOXigHOK) PiIBHOMIPHO 36iracTbesa Npu
BCiX t € XX+, tioro cyma X(t) € HenepepBHO-AUMEPEHLLiIAOBHMM PO3B'A3KOM CUCTEMU PIBHSAHb
(4) i 3300BOSIbHAE YMOBU

| *(01<~, 1%01< Y=T

Mokakemo Tenep, L,0 NodyaoBaHUiA y BUrnagi pagy (5) po3B'a3ok X(£) cMctemu piBHSAHb (4)
€ EANHUM NpPUN BMKOHaHHI ymoB 1), 2). [ilAcHo, NpUNycTMMO, L0 iCHYE e 0AUH HenepepBHO—
ONGEPEHLLIAOBHNIA 06MeXeHUIA Npn t € R + po3B'A30K y(t) TakmiAa, wo y(t) ¢ x(t). Toai i3
TOTOXHOCTEIN

0 K K
x(F+1) = Ax() = L( 2 AT@X(T +ut) + 2 B, ()X (T +BN,) + F ()W ,
1 m=\ m=1
K K
y(f+1) = Ay(t) - f AT{T)Yy(T +am) + Z Bm(T)y'(r + *m) + f(T))iir
N\ m=l m=1

i ymoB 1), 2) OTPUMYEMO

+00 k

Nx(@O)-y(@OI < JA-LIXE+ D -y (F + D + |A-1] T (Z AWM IX(T + 1) = y(T + )N\
{ T1=1

+ X \BIO\N\X(T +ar) -y (T +B3,,)\)dt

T=1
< N0 -y + Wz ar+ 2 NN -\
T=1 /n=1
= (JA"H +A@Q - A" (D) -y = A (@) - y(oH,
k
x,(0 —y4dOl - 2 1lix/(i+1) _ y;(f+ DI +W al (E W« lix(i+«m) - y(i +
‘'m=1
k
D IBTOUAC +aT) - /(i +jSm)na
m=1
< |In IO -yl + N 1 = > b)I*(0 —y(0 I

m=1 m=1

(W _li+a(i - JA-2D) 1 Ix@()-y@)l =4'HO-y(O11/

ae 1Ix® —ydll = Max| sup Ix(t) —y(0]/ SUP Ix/(0 —y,(i)I1f/0 < A' < 1. 3Bigcy BMN/nBae
YeR+ feR+ J
Hx(f) —y Ol < A Ix@®) —y®@]], wo € MmoxnmMBMM NuLle y BilagKy, Komm x & y. OTxe, oTpu-

MaHe NpPoTuMpivUs NoKasye, L0 NodyaoBaHUIA BULLE HEMepPepBHO—ANGDEPEHLLIAOBHUEA 06MeXe-
HMA NpU t € R +po3B'a30k x(t) y surnagi pagy (5) € EgMHUM Npy BUKOHaHHI yMOB 1), 2).
MigcymoByo4u HaBeAeHi BuLLe pe3ynbTaTu, NPUXo4MMo 40 HAacTYMHOI Teopemu.



Teopema 1. Hexaii BUKOHYOTbCS yMOBU 1), 2). Toai cucTeMa piBHSHb (4) Mae €aAMHMIA Hene-
pepBHO-ANGepPeHLIIA0BHNIA o0bMexeHnIA nNpu t € R+ po3B'a3ok x(t) y surnagi pagy (6), B
AKOMY BeKTOp-QyHKLITXi(t), i = 0,1,..., Bu3Ha4varoTbca popmysiamum (10),i= O4,....

Po3rnsaHemMo Tenep cUCTeMy piBHSAHb BUIsay (1) y BUNaaKy, KOsl BUKOHYHTHCSA YMOBU:

. ® . oo N @
3) PagnP(E) = = -1PH f \FONIT, F'(t) = £ \ad WI\Ht + )\ piBHOMipHO 36i-
/=0 t+j =0

raloTbca Nnpu Beix t € IR+i F(t) < P, F'(t) < P, P > O

4) JAm@)| <am(t), Bn®ON\<bm(t),m = I,....k, £ am(t) = a(t),
m=1

k
> bm(t) = b(t), ge am(t), bm[t), m = 1,... [, — AesKi HenepepBHi Npn t € R +, HeBI'-
m=|

EMHI PYHKL,iIT TakKi, wo

@® oo
EIN_1t+1 // (A(T) +b(T))n ' < 0< 1,
1—o *+/

00

E W -1V+1(a(*+/) + K*+;)) < 0< i.
M

AK i paHiwe 6yagemo gocnimkyBaTu MUTaHHA NPO iCHYBaHHS HenepepBHO-ANMEPEHLIAOBHNX
npu t € IR+ po3B'A3KiB, W0 3340B0/IbHAIOTL YMOBY (3). /18 Lb0oro, oMeBUAHO, A0CTaTHLO BU-
BUMTU Lie MUTAHHA 419 CUCTEMU IHTerpasibHUX PiBHAHb (4). Mae MicLe HacTyrnHa TeopemMa.

Teopema 2. Hexai1 BUKOHYOTbhCA YMOBU 3), 4). Toai cuctema piBHAHb (4) Mae HenepepBHO-Au-
thepeHLi I 10BHNIA 06MeEXeHNIA Npn t € IR+po3B'A30K X(t).

AoBefieHHs. ToKaXemo, Lo Npmn BUKOHaHHI yMmoB 3), 4) cuctema piBHAHb (4) Mae HernepepBHO—
ANdepeHLiii0BHUIA 06MexeHMIA npu t € JR+po3B'a3ok x(f) y Burnagi paay

o]0}

x(n = _in(ri, (12)

i=0
oe Xi(t), i = 0,1,..., — AesKi HenepepBHO-ANMDEPEHLLILA0BHI 06MeXeHi Npu t € IR+ BeKTop-
hyHKUIi. OitAcHo, nigcTaBnsoum pag (12) y (4), oaep>Xnmo

[00) 00 H°/ k (00]
E*i(*+ 1) = AZ*i(*)~ / (E A(t)Z _ Xxi(t+"
ESIC+0 = AZFI()~ / (E A Z X +n)

k 00
+ 2 M T)E*i(T+pBn) +P(1))4T,
w=1 r=0
3BiAKN NPUXO4MMO A0 BUCHOBKY, L0 SKLL0 BEKTOp—PyHKLiT Xi(t), i = 0,1,..., € po3B'A3KamMu
Moc/1iA0BHOCTI CUCTEM PIBHSHb
+00
xo(t +1) = Axo(t) - J F(j)dT, 13

4-0° k

k
Xi(t + 1) = Axi(t) - i (2 AT@)xi-i(T +am) + 2 B,.(T)%-1(T +BM)4T,
l m=I m=1 u4;

i =1/2,...,

To pag (12) € popMmasibHUM po3B'A3KOM cuctemu (4). 3rigHo ymosu 3) paan

® +0)
x0(0 = E A (1) / F(T)dT
M t+ (15)
®
20(f) = - £A - U +I>F(t +1)
1=0

piBHOMIpPHO 36iratoTbca NMpu Beix t € 1R+ BeKTOop-yHKLUisa Xo(0 3a40B0OsIbHSE CUCTEMY pPiB-
HAHb (13) (B LLbOMY MOXXHa NepeKoHaTumca 6e3nocepefHbOO NigcTaHOBKOK (15) B (13)) | ymoBU

i*o(O I <p, (16)
1*0(01 < P- a7
Po3srnspgatoum nocnigoBHO cucTemMu piBHAHL (14), i = 1,2,..., MOXHa nepeKoHaTucs, Lw,0
paan
xigt) — 2 A (+1) / ( 2 AMOXi-1((T+am) + E MO*i_1(T +jSw) W
=0 i - IpIEL M=1 18
j
1= 12...
€ (hopMasIbHUMM PO3B'A3KaAMM BIAMOBIAHUX cUCTEM piBHAHBL (14), i = 1,2,— [Joseaemo, Lo
Ui pagn piBHOMIipHO 36iratoTbes Npn t € 1R+ A0 aesknx BeKTop-yHKUILA Xj(t), i = 1,2,...,
SIKi € HeMnepepBHO-ANMDEPEHLLIAOBHMMM | 3a10BO/TbHAIOTbL YMOBU
NN\ < PO, i=1.2...... 19
13(01 <POL, i=1,2,.... (20)

[ilAcHo, Ha niacTasi ymosu 4), (18), (16) i (17) oTpuMyeEMO

+0°  k k
MOT < E IJT 1HL 1| (E \MuON\NO(T + r)\+ E  RT(ON\NO(T + Bn)\)dt
j=0 t+- T=1 m=1
+~
< PEM 1B / (a(7) +b(M)d
n
j=0 4]

T06TO B UbOMY BMMaAKy ouiHKa (19) mae micue. OCKifibKKM 3rigHo 4) pag,

00 k k
E A (tDYE Am(t+jXo(t+j +am) + E

j=0 m=1 m=1

*o(t +j +" m)J

PIBHOMIPHO 306iraeTbCcsi Npu BCiX i € R+, To BEKTOP-(PYHKLIS X\(t) € HENepepBHO—AMNhepeHLi—
/10BHOIO Mpu t € R +i Mae micue ouiHKa (20).



PosmipkoBytoumn no iHAYKLii, NpniycTuMo, Wo cniseigHoweHHsA (19), (20) aosBedeHi yxe
ona geskoro i > 1, i goBegemo, L0 BOHW 36epiratoThesa npu nepexodi Big i go i + 1. Cnpasgi,
BHacnigok (18), (19), (20) i ymoBu 4) 0oTpUMYEMO

+0° K
f<HOl <E N 1A / (E NIF(MN\N\G(T+r)\+ E Nar (NG (T + Br] )\)O(T
/=0 tH mel m=1
+D
<POEH _1IPHL / (e(r) + b(r))rfr
'=0 t+]j

BekTop-yHKLUif X;H (i) e HenepepBHO-AM(EPEHLLILA0BHOK NMpU t € R +i BUKOHYETBLCSA OLjiHKA
(20). Lle BunnmBeace i3 4), (19), (20) i piBHOMIipHOT 30D>KHOCTI pagy

00 k K

L A {{+){ E Amit+jxi(t+j+am)+ E Bmit+/)xjli+j 4B, A\.

j=0 m=1 w=1

OTxe, oyiHku (19), (20) matoTb Micue npu Beix | > 1. 3Biacy 6e3nocepeHbLO BUMNJIMBAE, L0 pAL,
(12) piBHOMIipHO 36iraeTbea Npn t € IR+ 00 AeAKol HenepepBHO-ANGEPEHLIAOBHOI BEKTOP-
PYyHKLIT X(t), SKa € p03B'A3KOM CUCTEMU PIBHAHBL (4) | 3340B0O/IbHSAE YMOBY

|*(01 < y~O - (21)

Teopema 2 goBefeHa. O

TakmM 4MHOM, Ha NiAcTaBi TeopemMu 2 cuctema piBHAHL (4) Mae HernepepBHO-AUdepeHLi-
AOBHNIA 06MeEXeHUIA Npu t € 1R+ po3B'a3ok X(t) y surnagi pagy (12). binbwe uboro, Aani
MU MOKaXXeMo, Lo Npu AesKUX 000aTKOBUX YMOBax cuctema piBHAHb (4) Mae HeCKiHYeHHO
baraTo HenepepBHO-ANMEPEHLIIOBHNX 06MexXeHUX npn t € 1R+ po3B'askiB x(t) = x(t,aj(t)),
ge w(1) — geska 1-nepioguyHa BeKTOp-PYHKL,is, AKi 3340BOJ/IbHAIOTb YMOBY

thm jx (i) - x(i)] = 0. (22)
BukoHaemMo B (4) B3aEMHO-04HO3HAUYHY 3aMiHY 3MiHHUX

*(0 = y(0 + LU . (23)

ge X(t) — po3B'aA30K cuctemu (4) y surnagi pagy (12). Y pesynbTtaTi OTPUMaEMO CUCTEMY pPiB-
HSHb

+° k K
yt+1) = Ay@t) - i (E AT(My(T +am + E BT(T)Y'(T +pBWm))dar, (24)
\ m=1 m=1 J

Bi4HOCHO K0T 6y4emMo NpnnycKaTy BUKOHaHSA YMOBU 4) | YMOBU
5 1A I<L

Mae micLe HacTyrnHa Teopema.

Teopema 3. Hexain BUKOHYIOTbCS YMOBU 4), 5). Toai cuctema piBHAHb (24) mMae ciMm'to Hene-
pepBHO-AntepeHLiIA0BHNX obMexeHUX npn t € K+po3'askiB y(t) = y(t,aj(t)) y surnagj

pagy

(€]
YO = £*(»). P5)
/=0
ney,(0/i= 0,1,..., — peski HenepepBHO-AN(EPEHLLiLA0BHI 06MeXeHi Mput € 1R+ BeKTop-
MYHKLIT, AKi 3340BO/IbHAIOTb YMOBY
iI|m y(t) = 0. (26)

AosefieHHs. Pan (25) € hopMasibHUM PO3B'A3KOM CUCTEMU PIBHAHB (24), TO6TO BUKOHYETbLCA
cniBBiAHOLIEHHS

/

E(+) =nEyD-7 (E auByi(T-+a+E M) Eyn+4 rr,

m=1

y BUMaAKy, KoM BeKTop-PpyHKUiT y,-(i), i = 0,1,..., € po3B'A3KaMM MOC/i40BHOCTI CUCTEM
pPiBHAHb
yo(f +1) = Ay0(0/ @7
+0 k
yit+1)=Ny/(0 - [ (E Aw(m)y, (T +aT)+ E ~"("y'-~T +7)iir,
W T=1 T=1 (28)
1= 1,2.......

Cucrtema piBHSIHb (27) Ma€ CiM't0 HenepepBHO-ANMEPEHLIAOBHMX NpU t € R +po3B'aA3KiB
BUrIS4Y
yo(f) = A~o(i - [iD), (29)

ne [[] — uina vactuHa i, (T) — AoBiNIbHA HenepepBHO-AVdeEpeHLitAoBHa NMpyu Te [, 1) Bek-
Top-(PYHKLIA, W0 3340B0/IbHSE YMOBU

Pl - 0) = Ap(0), (1 -0) = Ap\6).

Jlerko nepekoHaTucA, W0 AKLL0 yo(t) € 04uH i3 po3B'A3KiB, L0 BU3HaAYaThCA hopMysioto (29),
TO MalTb MicLe OLLiIHKN

\yo(i) \<P\A\], €9)
N yT<TI, ovu

he P — fedka noaatHa ctana.
Po3rnspgatoum nocnigoBHO cMctemMu piBHAHBL (28), 1 = 1,2,..., MOXHa NepeKoHaTucs, Lo

pAan



€ (hopMasiIbHUMMU PO3B'A3KaMM BigrnoBigHNUX CUCTEM PiBHAHBL (28), i = 1,2, TokKaxemo Te-

nep, wo paan (32),i = 1,2,..., piBHOMIpHO 36iraloTbcsa Npu BCiX t € IR+ 0 AeAKNX BEKTOP-
byHKUiA y;(E)/ i = 1,2,..., AKi e HeNepepBHO-ANtepeHLitAoBHUMM Npn t € IR+ i 3a40B0O/bHSA-
I0Tb YMOBU
NION<POIMYNN i —1,2 ,, (33)
NNON\<PO'|Af, /= 1,2,.... (34)

CnpaBai, npuiimatoum go yearu (32), (30), (31) i ymosu 4), 5), oTpUMyeEMO

OTXe, oyiHKa (33) mae micue. AudepeHyitotoumn (32), OTPUMYEMO psL

(0] k K
Yi0 = ~= A Am(t +j)yo(t +j +am) -f ~ Bm(t +j)yb(t +j + Bn)\
j=0 m=1 m=1

AKUIA Ha nigcTasi ymos 4), 5) i cniBBigHoweHb (30), (31) piBHOMIipHO 36iraeTbea Npn t € M+
ioro cyma y[(t) 3agoBonbHsie ymoBy WD\ < FONANL

AHaNOriyHoO MoXHa gosecTm, wo pagn (32), i = 1,2,...,r, piBHOMIpHO 36iraloTbca Npu
t € K + 10 AEAKUX HeENepepBHO-ANMEPEHLIAOBHMX BEKTOp—-(yHKLUINA Yi(l), i — 1,2,...,r, wo0
330B0SIbHAIOTL YMoBM (33), (34),i = 1,2,..., I. Ha nigcTasi (32), (33), (34) i ymos 4), 5) oTpu-
MYEMO

OTXe, oyiHKa (33) BUKOHYETbCA NMpu BCiX | > 1. BHacnigok (33), (34) i ymos 4), 5) pag,

00 k K .
yr+i(0 =~ A (= +jyr(t+j +0m + ~ Bm(t +])y'r(t +j + pny),
j=0 m=I m=l
piBHOMIipHO 36iraeTbed Npu t € 1R+ i BUKoHYyeTbeA ymoBa [ild+1(F)I < POr+1]JA|(.

Tum camum goBegeHo, Wwo pagn (32),i = 1,2,..., piBHOMIpHO 36iraloTbcs npu BCiX t € IR+
[0 fessKNX HernepepBHO—ANMePeHLLiLA0BHNX BEKTOP—-PYHKLUIA yi{t), i = 1,2,..., AKi 3340B0/1b-
HATb YMoBU (33), (34),i = 1,2,  3Bigcu 6e3nocepefHbO BUNMBAE, WO pag (25) i pag,

@
<G)= Zv'M
*) i=0

pPiBHOMIpHO 36iraloThecs Npu t € 1R+ i BUKOHYOTbCA CMiBBIAHOLEHHS

MOT < lywWl<r~mi*.

MpniAmatoum Ao yBarv ocTaHHi CNiBBiAHOLEHHS | YMOBY 5), 0TpUMYEMO, L0 NobyaoBaHi po3-
B'A3KU 330BO/1bHAOTH YMOBY

S,y = 0.

Teopema 3 goBefeHa. [
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Conditions of the existence of continuously differentiable bounded for t € IR+ solutions of one
boundary value problem for systems of linear and nonlinear difference differential equations of
neutral type have been obtained. The method of their construction has been developed and the
asymptotic properties of these solutions are investigated.
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NEW APPROACH TO DERIVATION OF QUANTUM KINETIC EQUATIONS WITH
INITIAL CORRELATIONS

We propose a new approach to the derivation of kinetic equations from dynamics of large par-
ticle quantum systems, involving correlations of particle states at initial time. The developed ap-
proach is based on the description of the evolution within the framework of marginal observables
in scaling limits. As a result the quantum Vlasov-type kinetic equation with initial correlations is
constructed and the statement relating to the property of a propagation of initial correlations is
proved in a mean field limit.

Key words and phrases: marginal observable, kinetic equation with initial correlations.
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Introduction

As it is well known the collective behavior of large particle quantum systems can be effec-
tively described within the framework of a one-particle (marginal) density operator governed
by the kinetic equation [1-4]. In this paper we consider the problem of the rigorous description
of the Kkinetic evolution in the presence of initial correlations of quantum particles. Such initial
states are typical for the condensed states of quantum gases [5-8] in contrast to the gaseous
state. For example, the equilibrium state of the Bose condensate satisfies the weakening of
correlation condition specified by correlations of the condensed state [5]. One more example
is the influence of initial correlations on ultrafast relaxation processes in plasmas [9], [10]

The conventional approach to the rigorous derivation of the quantum kinetic equations is
based on the consideration of an asymptotic behavior of a solution of the quantum BBGKY hi-
erarchy for marginal density operators constructed within the framework of the theory of per-
turbations in case of initial states specified by a one-particle (marginal) density operator with-
out correlations [11-14], i.e. such that satisfy a chaos condition. This method of the derivation
of quantum Kinetic equations can not be extended on case of initial states specified by initial
correlations.

In the paper for the rigorous derivation of the quantum Kinetic equations in the presence
of initial correlations we develop a new approach based on the description of the evolution
of large particle quantum systems within the framework of marginal observables governed by
the dual quantum BBGKY hierarchy [15]. In article [16] a rigorous formalism of the description
of the kinetic evolution of observables of quantum particles in a mean field scaling limit was
developed. In this case the limit dynamics is described by the set of recurrence evolution

© Gerasimenko V.1, 2015

equations, namely by the dual quantum Vlasov hierarchy. In this paper, using established
relationships of initial states specified by initial correlations and constructed solution of the
dual quantum Vlasov hierarchy for the limit marginal observables, we derive the quantum
Vlasov-type Kkinetic equation with initial correlations. The statement relating to the property
of a propagation of initial correlations is also proved.

1 Preliminary facts

We consider a quantum system of a non-fixed (i.e. arbitrary but finite) number of identical
(spinless) particles obeying Maxwell-Boltzmann statistics in the space R 3. We will use units
where h = 2nh — 1is a Planck constant, and m = 1is the mass of particles.

Let the space 'H be a one-particle Hilbert space, then the n-particle space 'Hn = H®nis a
tensor product of n Hilbert spaces 'H. We adopt the usual convention that 'H 00 = C. The Fock
space over the Hilbert space 'H we denote by T4 = ® “=0H«:-

Let I21('Hn) be the space of trace class operators fn = /«(1,- mmn) € £}('Hn) that satisfy
the symmetry condition: fn{l,...,n) —fn(h, mmmin) for arbitrary (zi, € (..., n),and
equipped with the norm: X, |I£i(",,) = Tri,.>a)/a(1,..., N\ where Trl(..,, are partial traces
over 1 particles. We denote by £q(H,,) the everywhere dense set of finite sequences of
degenerate operators with infinitely differentiable kernels with compact supports.

We shall consider initial states of a quantum many-particle system specified by the one-
particle (marginal) density operator FRE € 121(H) in the presence of correlations, i.e. initial
states specified by the following sequence of marginal (s—particle) density operators

Fao = (LN (D, «L(L,2)FIF A'(0 oo m@.n)rpi

i=I i=1
where | is an identity operator, the operators (1,...,n) = g,, € £g{Hn), n > 2, are specified
the initial correlations and the parameter € > 0is a mean field scaling parameter [17].
Traditionally correlations of quantum many-particle systems are described within the fra-
mework of marginal (s—particle) correlation operators which are introduced by means of the
cluster expansions of the marginal density operators

8 S U S) 2 N GIEIN)- si -2
P:(l,...,s)=U,Xf x;<p
where > is the sum over all partitions P of the set (1,...,s) into |A] nonempty mu-
P:(,,..,s)=U,X,-
tually disjoint subsets X,- C (1,...,s). Hereupon solutions of cluster expansions (2)
G?e(l....... s) = £ (-DIpH(pl - D! N S> 1, 3
P:(L...9=UX XiCP

are interpreted as the operators that describe correlations. Hence in the case of initial data (1)
sequence (3) of marginal correlation operators has the form

G<c>= (1,P?= (1), (1-2)M7L()....... ?»(1........ n)nff(i),...). 4>
i=1 i=1
where the operators g£(l,..., n) = € £7(H,,), n > 2, specified the initial correlations are
determined by the expansions
&= 2 (-Op-UPI-1) rixfw 5- 2 ®)
P:Y = UXi X<cP
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We remark that in case of initial data satisfying a chaos condition [Z] sequence (3) of
marginal correlation operators has the form

G° = (I, G“£(1),0.......0,...), 6)

and concequently sequence (2) of marginal density operators takes the form

Fe= o eaes n’\W—--)- P)

Such assumption about initial states, i.e. (7) (or (6)), is intrinsic for the kinetic description of a
gas [1]. On the other hand, initial states (1) (or (4)) are typical for the condensed states of quan-
tum gases, for example, the equilibrium state of the Bose condensate satisfies the weakening
of correlation condition with the correlations which characterize the condensed state [5].

We note that the evolution of large particle quantum systems can be described not only
within the framework of marginal density operators governed by the quantum BBGKY hier-
archy [2] but also in terms of marginal observables governed by the dual quantum BBGKY
hierarchy [15].

Let a sequence g = (go,qi, ... ,d,,,...) be an infinite sequence of self-adjoint bounded op-
erators gn defined on the Fock space Tu. An operator gn defined on the mn-particle Hilbert
space Hn = will be also denoted by the symbol g,,(l,...,n). Let the space £(F%)
be the space of sequences g = (go,gi, ..., gn,...) of bounded operators gn defined on the
Hilbert space IM,, that satisfy symmetry condition: gn(l,...,n) = gn(ilf..., in), for arbitrary
{hr---;in) € (1,...,«), equipped with the operator norm |JHIO(7,,)- We will also consider a

more general space S*{Fn) with the norm = max g [|lgv[EWi]), where 0 < 7 < 1.

We denote by £7b("h) C £i(Tnr) the everywhere dense set in the space 6 7(~ ) of finite se-
quences of degenerate operators with infinitely differentiable kernels with compact supports.

In terms of observables the evolution of quantum many-particle systems is described by
the sequence B(t) = (Bq, Bi(i, 1),..., Bs(t, 1,...,s),...) of marginal observables (or s-particle
observables) Bs(t, 1,..., s), s > 1, determined by the following expansions [15]:

= T armt{r\x}.x)s»f.(y\x), s> 1, ®)
n0 °*

where B(0) = (Bo,Bj.e(1),...,B%¢(1,...,s),...) € £7(J") is a sequence of initial marginal

observables, and the generating operator 2li+n(t) of expansion (8) is the (1 + n)th-order cu-

mulant of groups of operators (10) defined by the expansion

alt, (f.{Y\x},x)= E D) IrlApl —2)!' M onewsne w (©)]
P:(LYNX}EX)=U,X; X,CP

where we hold abridged notations: Y = (1,...,s), X = (4,...,jn) ¢ Y, and {Y \X} is the

set, consisting of a single element Y \X = (1,...,s) \(jIf.. .,/,,), thus, the set {Y \X} is a

connected subset of the set Y, the symbol = means the sum over all partitions P of the set
P

{Y \X1},/1,...,jn) into A nonempty mutually disjoint subsets X/ C ({Y \X}, X), and 6(-)
is the declusterization mapping defined as follows: O({Y \X}, X) = Y. In expansion (9) for
gn € £('H,,) the one-parameter mapping Qn(t) is defined by the formula

R13 t™: Gn(t)gn = eltHhgne~ItHn, (10)

where the Hamilton operator Hn of a system of n particles is a self-adjoint operator with the
domain V (Hn) ¢ Hnhas the structure

Hn= ZK(i) +¢ = & (bh), (H)
i=l <1221

and K(i) is the operator of a kinetic energy of the i particle, ®(r’i, ii) is the operator of a two-
body interaction potential and € > 0 is a scaling parameter [17]. The operator K(i) acts on
functions ipn, that belong to the subspace Lq(R3’) ¢ V(Hn) ¢ L2(1R3") of infinitely differen-
tiable functions with compact supports, according to the formula: K(i)ipn = ~"Adiipn. Corre-
spondingly, we have: o(r'i, i2rpn= & (*ri/* A", 1, and we assume that the function @ (giirgi2) is
symmetric with respect to permutations of its arguments, translation-invariant and bounded
function.

On the space £('H,,) one-parameter mapping (10) is an isometric *~weak continuous group
of operators. The infinitesimal generator Ainof this group of operators is aclosed operator for
the *~weak topology, and on its domain of the definition T>jN\in) ¢ £(Hm) it is defined in the
sense of the *~weak convergence of the space >.{Hn) by the operator

w*—lim y (2r(f)g., - gn) = ~i (gnHn - Hngn) = =Ny (12)

where Hnis the Hamiltonian (11) and the operator Aingn defined on the domain V(HnN) ¢ 'Hn
has the structure

Nn = E J1'0) E -MntOb/2)/
/=i h</2=1
where
N{j)gn = -i{gnK() - K()gn), 13)
Jamt(jvh)gn = ~i (gn~(jvh) - &{jl.j2)gn)- 14

Therefore on the space £,('Hn) a unique solution of the Heisenberg equation for observables of

a n-particle system is determined by group (10).
The simplest examples of marginal observables (8) are given by the expansions:

B1(i,1)=211(i,1)B°'g(1),
B2(U,2) = 211(i,{1,2})B°'£(1,2) +212(i,1,2)(B?'e(1) + B?£(2)),

where the corresponding order cumulants (9) of groups of operators (10) are given by the
formulas

2li(i, {1,2}) = Gs(t, 1, 2),
22¢t, 1,2) = Qs(t, 1,2) - o\(t, 1o x(t,2).

If 7 < e-x for the sequence of operators (8) the following estimate is true:
N\Y\N\&y(TN) - e2(1~ 7 e) 1]]20)]|iE7( 1)

A sequence of marginal observables (8) is the non-perturbative solution of recurrence evo-
lution equations known as the dual quantum BBGKY hierarchy [15].

We note that in case of initial states specified by sequences (23) the average values (mean
values) of marginal observables (8) are determined by the following positive continuous linear



functional
oo + n
B8(),FM) = £ -Tr,...,,,B,,(U....a)a*(1........ n)n»(o- (15)
n=0 MNm /=1
For operators B(f) €
1MW )< T

and F°'£ € £* (H), functional (24) exists under the condition that

2 The description of the kinetic evolution within the framework of marginal
OBSERVABLES

In scaling limits the kinetic evolution of many-particle systems can be described within
the framework of observables. We consider this problem on an example of the mean field
asymptotic behavior of non-perturbative solution (8) of the dual quantum BBGKY hierarchy
for marginal observables.

A mean field asymptotic behavior of marginal observables (8) is described by the following
proposition [16].
Let for BRE € £('H ), in the sense of the *~weak convergence on the space £ (H n) it holds

w*—lim (£-"B%;e -b°n) = 0, n> 1,

€->0

then for arbitrary finite time interval there exists mean field scaling limit of marginal observ-
ables (8)

w*lim E~sBs(t) - bs(t) = 0, s> 1 (16)

that are determined by the following expansions:

s—1 J fr-1 s
bs(t,Y)= X /Ni--- [ dtnYI&it-tvh) E Mnt(/b/i)
n=0 0 ()] heY Lix=1
x M  &(*i-tbh)--. M - tn,In) a7
heY\() INEYN\(jb-,jn-i)
T, -Mnt(hi,jn) M...In+1)b°8n(Y\(l........ 1)),

in"jn=¥
infin @ (/I/ --->jn-1)
where the operator A/i*Ob/r) is defined on operators gn € £('Hn) by formula (14).

The proof of this statement is based on formulas for cumulants of asymptotically perturbed
groups of operators (10).

Indeed, for arbitrary finite time interval the asymptotically perturbed group of operators
(10)has the following scaling limit in the sense of the *-weak convergence on the space £ ('H 3):

w*~ Onx (Gs(t'Y) —M~1(A/))8d = O. 18)

Taking into account analogs of the Duhamel equations for cumulants of asymptotically per-

turbed groups of operators [17], in view of formula (18) we have

*lim (e~"-i-2L+, (i, {Y \X},i \ ]
we lim) 152 (i, { +i in)

t tn-1 s
- fdt\... f dtn Y[Q\(t - ti,h) E Alint(ji,/i) N Qi(h — h,h) m.

o] o] I"eY "1n1=1 heY\ (h)
S

J-[ —\~ tri/ln) E Alint(jtt/jn)
INEY\ (jlI'—>jn-I) Lo~ =

injn @ (N\—jm)
X J"J Gl (tfi/In+I)gs-n —O0,

In+i£Y\ (jb—jn)
where we used notations accepted in (17) and gs-n= gs_,,((l,..., s) \(4,...,jn)), n> 1 Asa
result of this equality we establish the validity of statement (16) for expansion (8) of marginal
observables.

If o € £7(3ft), then the sequence b(t) = (bo,h (t),..., bs(t),..,) of limit marginal observ-
ables (17) is a generalized global solution of the Cauchy problem of the dual quantum Vlasov
hierarchy

h s(t,Y):_tm U “Y+ t nivoinz) -i.n0i)< <>

h#2=i
bs(O\&=0 = I, s> 1, (20)

where the infinitesimal generator Af(j) of the group of operators Q\(t,j) of; particle is defined
on gi € £o(H) by formula (13). It should be noted that equations set (19) has the structure
of recurrence evolution equations. We give several examples of the evolution equations of
the dual quantum Vlasov hierarchy (19) in terms of operator kernels of the limit marginal
observables

d 1
I\ (L, Gy (fa) = ——(— , + Ag/ B\ (i, G\ Cfo),
i 12
i~b2(t,q1,fa; qz) = ~2 + A<2NA2(0 U 2" Ri7i72)

+ (i —;a- d (4i -92))(bi(f,ii;<?i) + h(t,q2-q2))-

We consider the mean field limit of a particular case of marginal observables, namely the
additive-type marginal observables B~ (0) = (0,8°'¢(1), 0,...) (the k-ary marginal observable
is represented by the sequence O = (0,...,0,B°¢(1,..., K),0,...)). In case of additive-
type marginal observables expansions (8) take the following form:

B\t Y) = %{t) £ BD(j), s> 1, 1)
y=1

where the operator 2ts(i) is sth-order cumulant (9) of groups of operators (10).
If for the additive-type marginal observable B°’s € £('H) it holds



then for additive-type marginal observables (21) there exists the following mean field limit

w*—JiT)O(e sBsM(t) —bg™(t)) = 0, s> 1,
E-

where the limit additive-type marginal observable
expansion (17)

is determined by a special case of

tin . i -iMAC=-'B'T) E MX(QA)
0 0
x Il onen-t2h) m. Il Nis—2 —fs—in )
€ Y\0i) P iE€EY\Yi...T7-2) 1
X E M*&-Vvi.-0 [T Gigts-bIs)bacy \ (h,....js-i)).
h-1 ¢ js-1= ¥ )

is-1-A-t ® O - -#s—=2)

We make several examples of expansions (22) for the limit additive-type marginal observables

&N(T, 1= Bl 1 &),
* 2

2
41 (M ,2)= fdtIYIGi(t-tLW b*M tGi(ti.j)t$(j)-
b 1= H=1

Thus, for arbitrary initial states in the mean field scaling limit the kinetic evolution of quan-
tum many-particle systems is described in terms of limit marginal observables (17) governed
by the dual quantum Vlasov hierarchy (19).

Furthermore, the relation between the evolution of observables (17) and the kinetic evo-
lution of initial states described in terms of a one-particle (marginal) density operator and
correlation operators (1) is considered.

3 The quantum Vlasov-type kinetic equation with initial correlations

We assume that for the initial one-particle (marginal) density operator F°'£ € £ J(H) there
exists the mean field limit lim |EFRE—/j' [JEv* = 0, and lim ||JE —gn]|I£i* ~= 0, n > 2, then

in the mean field limit the initial state is specified by the following sequence of limit operators

/©=MNe 54 (1,2)W (i) TG T n)LW (0.-) (A

1=l 1=1
We note that in case of initial states specified by sequence (23) the average values (mean val-
ues) of limit marginal observables (17) are determined by the limit positive continuous linear
functional (15)
o 4 n

(b(i)//(©) = E —y ). (24)
n=0 - 1=1

For operators b(t) € £7(J-%) and € £*(%), functional (24) exists under the condition that

N\NIN\NNH < 7-
We shall establish the relations of mean value functional (24) represented in terms of con-
structed mean field asymptotics of marginal observables (17) with its representation in terms

of a solution of the quantum Vlasov-type kinetic equation with initial correlations, i.e. in case
of initial states (23).
For the limit additive-type marginal observables (22) the following equality is true

@® 1
x>0,/ W) =E AT3. »i4(U....8)g.(l......»)LLI (0 =Tnt?(1)/,((,]),
s=0 Sm i=1
where the operator b~ (t) is determined by expansion (22) and the one-particle (marginal)
density operator f\(f, 1) is represented by the series expansion

tfi-
IF

fi(u)=E /i | iD4C....cHis: (t-hA)Mi. (i,2) Tiei(h-tbh)-
g 1=1

n=0 o (25)
n n n+l } L At
Xyxogitn-tn,iny = Kan'n+1) [T AMWYA+d....«FH)MN/T)O
/,=1 K,=I jn=1 *=1
In series expansion(25) the operator N *t(j\,j2)fn = -A/int(/l,/2)/« is an adjoint operator to

operator (12) and the group Gf(t, i) = G\(~t, i) is dual to group (10) in the sense of functional
(24). For bounded interaction potentials series (25) is horm convergent on the space S}(V.)
under the condition thatt < t0= (2 | |®LLa I/ |I£i(F))-1-

The operator f\(t) represented by series(25) is a solution of the Cauchy problem of the
quantum Vlasov-type kinetic equationwith initial correlations:

1/,(0,1) = A/-*(1)(M)

2 2 (26)
+ TY2A£,(1,2) 1 di(i--"O»(1-2) N (6MN)-A(t,ir)/i(t, /i (t,2),
*1=1 =1
/I(Oko = /f, (27)

where the operator Ai*(1) = —Ai(1) is an adjoint operator to operator (13) in the sense of
functional (24) and the group {G{)—~1(*) = G{(—~t) — Q\(t) is inverse to the group (GN\(t). This
fact is proved similarly as in case of a solution of the quantum BBGKY hierarchy represented
by the iteration series [13].

Thus, in case of initial states specified by one-particle (marginal) density operator (23) we
establish that the dual quantum Vlasov hierarchy (19) for additive-type marginal observables
describes the evolution of a quantum large particle system just as the non-Markovian quantum
Vlasov-type kinetic equation with initial correlations (26).

4 The propagation of initial correlations in a mean held limit

We consider the evolution of initial correlations in a mean field scaling limit.

The property of the propagation of initial correlations is a consequence of the validity of
the following equality for the mean value functional of the limit k-ary marginal observables,
i.e. the sequences bW (0) = (0,..., 0, bjj!(l,..., k), 0,...) [15] at initial instant, in case of k > 2

@ 1 S
@>(),/w) = E ijTFwbS (U ..... Ft(i...... 5)I L)
s=0 S- /=1
* k k
= ATTL. fe(l....... k)Um h)» (i.... K TM r'w Tobi).
K- 11=1 12=1 ji=1



where the limit one-particle (marginal) density operator f\(t,j) is represented by series ex-
pansion (25) and therefore it is governed by the Cauchy problem of the quantum Vlasov-type
kinetic equation with initial correlations (26), (27).

This fact is proved similarly to the proof of a property on the propagation of initial chaos
in a mean field scaling limit [18].

Therefore in case of initial states specified by sequence(l)mean fielddynamics of all pos-
sible states is described in terms of the sequence / =(Lfi {t),f2{t), mm, /«(0, - ) °f the limit
marginal density operators fn(t, 1,...,n), n > 1, which are represented within the framework
of the one-particle density operator f\(t) as follows

M U ... «) = YIGt(t,h)gn(\......... n —2/
=1 2=1 /=1

where the one-particle density operator f\(t,j) is a solution of the Cauchy problem of the
quantum Vlasov-type kinetic equation with initial correlations (26),(27). In case of initial states
specified by sequence (4) of the marginal correlation operators the evolution of all possible
correlations is described by the following sequence of the limit marginal correlation operators

gn(t,1,...,n) = 4 Gi(t,ii)gn(l,...,n) Y[(GZ)~1(t,i2)Y Ifi(t,j), n> 2,
*1=1 2=1 /=1
where the operators gn related to operators gn by expansions (5).

We note that the general approach to the description of the evolution of states of quantum
many-particle systems within the framework of correlation operators and marginal correlation
operators was given in paper [19].

Thus, in case of the limit fc-ary marginal observables solution (22) of the dual quantum
Vlasov hierarchy (19) is equivalent to a property of the propagation of initial correlations for
the k-particle marginal density operator in the sense of equality (28) or in other words the
mean field scaling dynamics does not create correlations.

5 Conclusion and outlook

In the paper the concept of quantum Kkinetic equations in case of the kinetic evolution,
involving correlations of particle states at initial time, for instance, correlation operators char-
acterizing the condensed states, was considered.

This paper deals with a quantum system of a non-fixed (i.e. arbitrary but finite) number of
identical (spinless) particles obeying Maxwell-Boltzmann statistics. The obtained results can
be extended to quantum systems of bosons or fermions.

In case of pure states the quantum Vlasov-type kinetic equation with initial correlations
(26) can be reduced to the Gross-Pitaevskii-type kinetic equation [14]. Indeed, in this case
the one-particle density operator /i(f) = YU\ is a one-dimensional projector onto a unit
vector \) € 'H and its kernel has the following form: f\(t,q,q") = ip(t, qQ)y* (i,q’). Then, if we
consider quantum particles, interacting by the potential which kernel ®(*) = 5(q) is the Dirac
measure, from kinetic equation (26) we derive the Gross-Pitaevskii-type kinetic equation [20]

5 1 f

where the coupling ratio g(t,q, g; ', q") of the collision integral is the kernel of the scattering
length operator G\(t, NGi(t,2)g2(l,2). If we consider a system of quantum particles without
initial correlations (7) (or (6)), then this kinetic equation is the cubic nonlinear Schrodinger
equation [13].

We note also that in paper [21] it was developed one more method of the derivation of quan-
tum Kinetic equations. By means of a non-perturbative solution of the quantum BBGKY hier-
archy it was established that, if initial data is completely specified by a one-particle marginal
density operator (in case of initial data with correlations see paper [20]), then all possible
states of quantum many-particle systems at arbitrary moment of time can be described within
the framework of a one-particle density operator governed by the generalized quantum kinetic
equation. The actual quantum kinetic equations can be derived from the generalized quantum
kinetic equation in the appropriate scaling limit, for example, in a mean field limit [18]. We
emphasize that one of the advantages of such an approach to the derivation of the quantum
kinetic equations from underlying dynamics governed by the generalized quantum Kinetic
equation consists in an opportunity to construct the higher-order corrections to the scaling
asymptotic behavior of large particle qguantum systems.
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LATERAL CONTINUITY AND ORTHOGONALLY ADDITIVE OPERATORS

We generalize the notion of a laterally convergent net from increasing nets to general ones and
study the corresponding lateral continuity of maps. The main result asserts that, the lateral continu-
ity of an orthogonally additive operator is equivalent to its continuity at zero. This theorem holds
for operators that send laterally convergent nets to any type convergent nets (laterally, order or norm
convergent).

Key words and phrases: orthogonally additive operator, lateral continuity.
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1 Introduction

Some versions of laterally (i.e., horizontally) continuous maps acting between vector lattices
were considered in [4] and [6]. A net (xa) in a vector lattice E in the mentioned above papers
is called laterally convergentto x € Eif XKC Xp C xasa < (3 and xa — >x. Here and in the
sequel the relation u C v means that u is a fragment (component, in another terminology) of
v, thatis, u L (v —u), and the notation xa — >x means that the net (xa) order converges to X,
i.e. there is anet (nx) in E with the same index set such that y»a —X\< uafor all a, and ua 4-0,
that is, (uK) is a decreasing (in the non-strict sense) net with zero infimum. In our opinion,
the assumption xa C X3 C x on the net in the above definition of the lateral convergence is
too restrictive and unjustified. One of the tasks of the present note is to generalize the lateral
convergence to not necessarily laterally increasing nets.

In [4] the authors considered maps that laterally convergent nets send to order convergent
nets (such maps were called disjointly continuous). In [6] the maps that laterally convergent
nets send to norm convergent nets in anormed space were called laterally-to—norm continuous.
In both papers [4] and [6] laterally convergent nets were considered to be laterally increasing.
Another task of the present paper is to analyze the relationships between different versions of
lateral continuity. We provide an example of a disjointly continuous map which is not laterally
continuous in the sense of new (generalized) definition of the lateral continuity. However, we
do not know if there exists an orthogonally additive operator of the kind.

Due to the generalized definition of the lateral continuity, there are nontrivial nets laterally
converging to zero. So, it is naturally to ask, whether the lateral continuity of a linear (or, more
general, orthogonally additive) operator can be reduced to the same continuity at zero. Our
mail result answer this in the affirmative.

© Gumenchuk A.l., 2015
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1.1 Terminology and notation

Terminology, notation and facts on vector lattices, that are familiarly used in the paper
were taken from [1]. The equality z = x Uy for elements x,y, z of a vector lattice E means
thatz = x +yand x Ly, thatis, pd A WN\=0. All vector lattices considered in the paper are
assumed to be Archimedean.

For the first time orthogonally additive operators on vector lattices were considered and
investigated in [4] and [5]. Let £ be a vector lattice and X be a vector space. A function
T : E —» X is called an orthogonally additive operator if T(x Uy) = T(X) + T(y). In other
words, orthogonally additive operators the sum of two disjoint elements send to the sum of
their images.

An important example of a nonlinear orthogonally additive operator is the positive part

x+ of an element x in a vector lattice E. Show that, if x L y then (X +y)+ = X+ + y+m

Using the well known properties (u +v) V (u+w) — u+ (vVw) [1 Theorem 21] and
sup(—A) = —infA [1, p. 3] for u,v,w ¢ E and A C E, taking into account that x+ L y—,
y+ L x_, and that the disjoint (orthogonal) complement is a linear space [1, Theorem 3.3], we
obtain (x++y+) A (X 4-y-) =0, and hence

X+y)+t= X+y) V0= (X++y+-X—-y=)V (X++y+- X+-Yy+)
= X++y++ (=(X_ +y=)V - (x++y+)

X++y+—(X++y+H) A X +y~) = X++y+

We use several times the example of a vector lattice of all functions x : Q — IRwith
respect to the pointwise linear operations of taking the sum and the multiplication by a scalar,
and with the pointwise order: x < y if and only if x(f) < y(f) forall t € Q. Given a subset
A c Q, the symbol Ig denotes the characteristic function of A, that is, the functionlg : Q — R
given by

i m= llIr iite A’
10 ifte QO\NA.

Definitions and necessary properties of Boolean algebras see in [2, Definition 7.9].
1.2 The lateral order

For the first time the lateral order and its properties were considered in [3]. But, as far as
we know, the cited paper is not yet published. So, for convenience of the reader, propositions
that we took from [3], we provide with complete proofs and citation.

Proposition 1 ([3]). Let E be a vector lattice and X,y € E.
(1) Ifx Oy then

(@ x+ C y+and x~ Oy~,
(b) x+ < y+and x~ < y—~,

(c) x= _Ly+and x+ Ly~,

OweN

(2 xCy ifand only ifx+ C y+and x~ C y—.

Proof. Assume X Q vy, thatis,y = xU (y —x). Then y+ = x+U (y —x)+, which implies
x+ < y+and (y —x)+ = y+—x+. Hence y+ = x+U (y+—x++), i.e., x+ C y+. Analogously,
X~ < y~and x~ Cy". Thus, (@), (b) and the "only if" part of item (2) is proved.

© By (), 0< x Ay+<y Ay+= 0. The second part of (c) is proved analogously.

(d) By (@), x+ xy+ - x+ and by (c), x+ L y~. Moreover, x+ L x~. Hence x+ L M — X
Analogously, x~ L M — K. The latter two relations yield 4 L M — [XI, thatis, i [Z M.

The "if" part of (2). Suppose x+ C y+and x— C y". Then the first relation implies

X+ < y+ Then 0 < Xx+Ay~ < y+Ay— = 0, and hence x+ _L y—~. Taking into account
X+ L (y+ —x+) and x+ £ x—, one gets x+ L (y+- Xx+—y~ + Xx~), i.e,, x+ L (y - X).
Analogously, x~ + (y —x), and thus, x L (y —X). |

Proposition 2 ([3]). Let E be a vector lattice. Then the binary relation C is apartial order on E.

Proof. For every x € E the relation x [(Jx means that x J_0, which is obviously valid.

Assume Xy € Eand x C y C x. Since x L (y—x)andy L (y—X), one has
(Yy—x) L (y—x), thatis,y—x = 0. Letx,y,z € Eand x Cy C z. Then x L (y —X).
Moreover, by (1) (b) of Proposition 1 one has 4 < |yl The latter inequality together with
y L (z —y) gives x J_ (z —y). Since the orthogonal complement is a linear space [1, Theo-
rem 3.3], we obtain X L (y —X) + (z —y) = z—X, thatis x C z [

Given any e € E,by  we denote the set of all fragments of e, $e — {x € E : x I e}. Item
(1) of the following proposition is very known for e > 0 [1, Theorem 3.15].

Propositions ([3]). LetE be a vector lattice and e € E. Then

(1) theset$eofall fragments ofeis a Boolean algebra with zero O, unite with respect to the
operations xUy = (x+Vy+) —(x* Vy") and xfly = (x+Ay+) —(x- N1y-);

(2) ife > 0 then the lateral order C on $ecoincides with the lattice order <, and hence the
lateral supremum (infimum) ofan arbitrary set A C $eequals its lattice supremum;

(3) xUy equals the supremum, and x My equals the infimum ofa two-pointset {x,y} C fo,
with respect to the lateral order C bothin and E.

Proof. (1) By [, Theorem 3.15], $et+and & are Boolean algebras with zero 0, units e+ and e~
respectively and operations V and A, that coincide with the lattice operations on E. Consider
the direct sum $e+0 $e-, that is, the Cartesian product 3g+ X with zero (0,0), unit (e+,e~)
and operations (xi,yi) V (x2,yr) = (xi Vx2,yi Vy2) and (xi,yi) A(x2yr) = (xi A*2/Yi Ny?2).
Obviously, &+ O $e- is a Boolean algebra. Then the bijection r : £e+O given by
T(X,y) = x—y forany (x,y) € 5+0 (the facts that T(X,y) € ge, and that r is one-to-one
follow from Proposition 1) induces the Boolean algebra structure on $e. It remains to observe
that r sends (0,0) to O, (e+,e~) to e+ —e~ = g, and the induces operations are given by the
formulas given in the statement of ().

(2) Assume e > Oand X,y € 3= By Proposition 1, x,y > 0.

Let x C y. By (1) (b) of Proposition 1, we get x < y.

Letx<y. Then0O< xA(e—y) < XA (e—x) = 0,and hence x L (e—y). Since x L (e —X)
and the disjoint complement is a linear subspace [1, Theorem 3.3], we obtain x L (y —X), and
hence x € ¥-

(3) follows from (2) and Proposition 1. |



By Proposition 3, using the well known equality X +y = xVy + xAy[I, Theorem 1.2], we
obtain the following consequence.

Corollary 1 ([3]). Let E be a vector lattice, e € Eand X,y e Then x+y = xUy + xXI"\y.
Proof. The proof follows from equalities:

X+Yy = X++y+—(X— +Yy~)

= X+Vy++x+Ay+- (X- Vy— +x~ Ay—~) = xUy4-xny.
L

In the sequel, on the Boolean algebra $e we will consider the set-theoretical operations
XNy = xM(e —y) = x—xMNyand XAy —(X\y) U (¥ \XX) - (X\y)u(y\Xx).

Definition 1. A subset A ofa vector lattice E is said to be laterally bounded if A C $efor some
6€ E

2 Lateral convergence

In this section, we generalize the lateral convergence from laterally increasing nets to arbi-
trary ones. All statements that are used to prove the main result are given as lemmas, however
they could be of their own interest. By a laterally converging net in a vector lattice we mean any
laterally bounded order converging net. But not only such nets. The point is that, by attach-
ing of several new elements to a laterally bounded net, one can spoil the lateral boundedness,
however, by the idea of convergence, this should not affect the lateral convergence. Taking this
into account, we give the next definition.

Definition 2. An order converging net (xft) to an element x ofa vector lattice E, so that there is
an index a0 such that the net (x«)/>wm is laterally bounded, is said to be laterally converging to

. L . |

X, and the element x is called the lateral limit o/(xa). The notation x« 2'>x means that the net
(xa) laterally converges to x. In the particular case, where xa E xB for any a < (3, the laterally
convergent net (Xo) is called up-laterally convergent to its lateral limitl.

It is interesting to observe that the lateral limit is laterally bounded by the same element as
the net itself. This follows from the next statement.

Lemma 1. Let E be a vector lattice and e € E. Then the set $eis order closed.

Proof. Let xa X, where x« € ge and X € E. Show that x ¢ e. By the order continuity of the
lattice operations, 0 = x| A Ye—x| P A Ye- x|, and hence, P4 A Ye—Xx] = 0. O

As an immediate consequence of Lemma 1 we obtain the following fact.

Lemma 2. Let E be a vector lattice, e € E and xu ﬁtp(, where x € E and x,,Ce forall > olg
Thenx O e

1Recall that exactly these nets in [4] and [6] were said to be laterally convergent.

We say that a subset A of a vector lattice E is laterally closed if the lateral limit of any net

from A belongs to A. Using this terminology, Lemma 2 asserts that, for any e € E the set fo, is
laterally closed.

Next we show that, in the definition of the lateral convergence, one can choose a majorizing
net to be laterally bounded.

Proposition 4. Let E be a Dedekind complete vector lattice, e € E, xa i’1t>x, where x € E and

xa C eforall a > an. Then there is a net (va) with the same index set such that va C \and
loh—p] Cd, forall@> agandva O.

For the proof, we need the following lemma.
Lemma 3. LetE be a vector lattice, e € E andx,y C e. Then [x—yj = |xAy] O &\

Proofof Lemma 3. Subtracting from the equality x = (X \y) U (x M y) the equalityy — (y \x) U
(xMy), we obtain x —y = (X\y) - (Y\X). Since (xX\y) L (Y\X), by the orthogonal additivity
of the positive part of an element and Corollary 1, we obtain

I*~y] = 10 yi +Iy\*l = I(*\y) + (YN = 1(Ty)n (y\)I= I*g yl-
Since xJ1y C g, by item (I)(d) of Proposition 1we get |[xly] C &\ O

ProofofProposition 4. Let (ua) be a net in E such that | - x| < ua 4 0. For every a we set
Mx = MB>a B —X\ The supremum exists because N3—x] < 2e for all 3 and E is Dedeking
complete. By Lemma 3, y3—X\ Wfor all 3. By (2) of Proposition 3, vu equals the lateral

supremum of the net (N3 —XN)B>0- Hence va C “\ The inequality Mt —x] < va for all a
follows from the construction of va. Finally, the condition va | O follows from

O<va< \JIp = 40.
B>a
[]

Lemma 4. Let E be a vector lattice, (xft) anetin E and x € E. Then the following assertions are
equivalent:

(i) X« —>x;
(i) x+ X+ X x~ and (xn)x>ftOis laterally bounded for some ao;

(iii) Theset {x} U {xo : a > a0} is laterally bounded and xaAx 0.

Moreover; each of (i)-(iii)implies \g\l—at N\

Proof, (i) <> (ii) The equivalence of xa X and the conditions x+ X+, X~ X~ is
easily seen. It remains to observe that, the lateral boundedness of (xa) implies that of the nets
(xa) and (xa) by Proposition 1

(i) = (iii) Assume xx Bt> X. By Lemma 2, there is e € E such that x,xa C efor alla > ao
Then the net (xoA x)o>oo is laterally bounded by e Moreover, by Lemma 3, hoAx] = pxn— x|,
and hence xaAx -"4-0.

(iii)y=> (i) directly follows from Lemma 3.

It remains to observe that the condition \(\\Bt> Nfollows from () (d) of Proposition 1
L]



Remark that the assumption of lateral boundedness of the set {x} U {xa : a > «o} in (Hi)
serves for the elements 1 AA.T to be well defined, and the implication (ii) = (i) may fail to
be valid if one removes the assumption of lateral boundedness of the net (x«) in (ii), as the
following example shows.

Example 1. There exist a vector lattice E, a sequence (X,,) in E and an element x € E such that

lat x4+, x “ x", but for every n0 € N the sequence (xn)n>n0is not laterally bounded,
and hence>(x,,) laterally diverges.

Proof. Indeed, consider the vector lattice E = JRr with the pointwise order and the sequence
(X,,) in E, given by

rt)=f b ift€ (-00J],

{' { -1, ifte (J,+ 00).

It is a simple technical exercise to show that the sequence (x«) order converges to

1 iff € (-00,0],

X0 =13 1 itie (0 +ooy

however, the sequence (xn)n>n0 is not laterally bounded for all no € N. On the other hand,
X+ = 1(coi] I (o0 Since x+ C 1(—ed for al n € N, one has that

XN = 1(-00,i] 1(-00,0]- Analogously, x~ = | (i,+0) 1(0,+°)- D

3 Lateral continuity

In this section we study versions of continuity connected to the lateral convergence.

Definition 3. Let E, F be vector lattices. A functionf : E —F is said to be:

(L-L) laterally continuous atapoint x € E if for any net (xa) in E the relation xu x implies
/(*«) /(*);

st
(L-O) laterally-to—order continuous atapointx € E ifforany net (xa) inE therelation xa >x
implies f(xa) /(x).

Definition 4. LetE be a vector iatfice and F a normed space. A functionf : E —=F is said to be

lat
(L-N) laterally-to—norm continuous atapointx € E ifforany net (xa) inE the condition xa  »

xyields ||/(X«) —/(X)“ - 0.

Following the terminology of [4], amap / : E —> F acting from a vector lattice E to a
vector lattice or a normed space F is said to be disjointly laterally (disjointly order or disjointly
norm) continuous at a point x € E if for every net (x«) in E up- laterally converging to x the net
(/(Xn;)) laterally (order or norm, respectively) converges to /(x) in F. The corresponding type
of convergence we denote by (DL-L), (DL-0) or (DL-N).

We say that a function / : E -mF is continuous in some of the senses ((L-L), (L-0), (L-N),
(DL-L), (DL-0) or (DL-N)), if / is continuous in the same sense at any point x € E.

Notice that the generalization of the notion of a laterally convergent net from up-laterally
convergent nets to arbitrary nets may affect the lateral continuity at a fixed point. Indeed, if
a net (xa) in a vector lattice E up-laterally converges to zero then xK = 0 for all a. Hence, an
arbitrary map / : E — F up-laterally convergent to zero nets sends to convergent nets in any
sense. So, it is hot a big deal to provide an example where the same happen at a nonzero point
X0 € E (say, at a point Xo which is an atom in E, that is, the only fragments of Xo are 0 and
Xo itself). It is clear that not every map acting from E = IRr to a nontrivial vector lattice or a
normed space is continuous in any of the senses (L-L), (L-O) or (L-N) at Xo- For instance, the
one givenby f(x0) = Oand /(x) = yO ¢ Oforall x € E\{xo}. Indeed, the sequence xn = |j0ij
laterally converges to Xo, however f(xn) = yo A 0in any of the senses (L-L), (L-O) or (L-N).

The following theorem, which is the main result, in particular, asserts that the lateral con-
tinuity of an orthogonally additive operator is equivalent to its lateral continuity just at zero.

Theorem 1. Let E be a vector lattice, F a vector lattice or a normed space, T : E — F an
orthogonally additive operator. Let X be one of the letters L, O or N. Then the following
assertions are equivalent:

(1) Tis (L-X) continuous;
(2) Tis (L-X) continuous at zero.

Proof. The implication (1) (2) is obvious. Prove (2) => (1). Let (xa) be anetin E, x €
E and xa Elt> X. Choose e € E and an index agso that xt C eas a > «w Then, by
Lemma 2, x O e. Next, Lemma 4 implies that xaAx Lt 0. Let (Wwa) be a net in E such that
boAx] < wua i 0. Taking into account that xaAx = (X0 \X) U (x \xa), we obtain
P« \X] < I 0and xN\x«] < W 4-0. Then xK\Xx 0 and x\xa 0, and hence,
XIT\X O and x\xa 0. By the (L-X)-continuity at zero, T(xa\Xx) —=0and T(x \xs1 —0

in the sense of X-convergence, because T(0) =0 (as T is orthogonally additive). Since xa —
(X« \Xx) U (xallx), by the orthogonal additivity of T,

T(x«) = T(xa\x) + T(xallx). (@)
Analogously,
T() = T(X\x0) + T(XMxa). @
Subtracting from (1) the equality (2), we obtain T(xa) —T(xX) = T(xa\XX) —T(x \xa) —> 0
in the sense of X. O

The following example shows that, the notion of lateral continuity changes when replacing
the up-laterally convergent nets with arbitrary lateral converging nets.

Recall that, following [4], amap / : E — F between vector lattices E and F is called dis-
jointly continuous if for every x € E and every up-laterally convergent net (xs1) the condition

Xa Ximplies f(xa) /(X).

Example 2. There exist vector lattices E, F and a disjointly continuous map f : E —F which is
not laterally-to-order continuous.



Proof. Set E = IRIOY, F = IRi0OA and defineamap/ : E —yFby/(0) = Oand f(x) = x+ 1(17]
for x ¢ E\{0}. Then is disjointly continuous at zero, because all up-laterally convergent
to zero nets consist of zero elements, and the disjoint continuity of / at any nonzero point is
obvious. Show that/ is not laterally continuous at zero. Indeed, for the sequence xn — 1 (0i),

n=1,2,... one has xn 0, and nevertheless, f(xn) = xn+ 1(i,2] 1(12]® 0= /(0)- n
We do not know if there is an orthogonally additive operator with the same properties.

Problem. Do there exist vector lattices E,F and an orthogonally additive operator
T : E —F which is not laterally-to-order continuous?

Remark that any other version of Theorem 1holds true in which instead of the convergence
in the sense X one considers another convergence (say, topological), which has the property of
uniqueness of limit and such that the sum of two convergent nets converges to the sum of their
limits.
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Introduction

In 1923, Eisenhart [Z] obtained the condition for the existence of a second order parallel
symmetric tensor in a Riemannian manifold and proved that if a Riemannian manifold admits
a second order parallel symmetric tensor other than a constant multiple of the Riemannian
metric, then it is reducible. In 1925, Levy [9] gave the necessary and sufficient condition for the
existence of second order parallel symmetric tensors and proved that a second order parallel
symmetric non-singular tensor in a real space form is always proportional to the Riemannian
metric. After that Sharma [13] improved the result of Levy and proved that any second order
parallel tensor (not necessarily symmetric) in a real space form of dimension greater than 2
is proportional to the Riemannian metric. Later in 1939, Thomas [17] defined and studied
the index of a Riemannian manifold. A set of metric tensors (i.e. symmetric non-degenerate
parallel (0,2) tensor field on the differentiable manifold) {H\...., Hp} is said to be linearly
independent if

ONN+ -+ A = 0, C\...,q €R,

impliesthatO\= ---= q = 0.
The set of metric tensors {H\,..., Hp} is said to be a complete set if any metric tensor H can
be written as

H = C\AON+ - - - + cpHp, C\... Qy€ER.

More precisely, the number of linearly independent metric tensors in a complete set of metric
tensors of a Riemannian manifold is called the index of the Riemannian manifold [17, p. 413].
Therefore the existence of a second order parallel symmetric tensor is very closely related
with the index of Riemannian manifolds. Then in 1968, Levine and Katzin [8] proved that
the index of an n-dimensional conformally flat manifold is n(n + 1)/2 or 1 according as it is a
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flat manifold or a manifold of non-zero constant curvature. In 1981, Stavre [14] proved that if
the index of an «-dimensional conformally symmetric Riemannian manifold (except the four
cases of being conformally flat, of constant curvature, an Einstein manifold or with covariant
constant Einstein tensor) is greater than 1, then it must be between 2 and n <-1 In 1982, Starve
and Smaranda [16] found the index of a conformally symmetric Riemannian manifolds with
respect to a semi-symmetric metric connection of Yano [22]. In the recent paper [18] author
and Tripathi studied the index of quasi-conformally symmetric, conformally symmetric and
concircularly symmetric semi-Riemannian manifolds with respect to any metric connection
and discussed some applications.

The index of the conformally flat and conformally symmetric (with respect to the Levi-
Civita connection, semi-symmetric metric connection of Yano [2Z2] and metric connection)
(semi-)Riemannian manifolds were studied by many authors [8,14,16,18]. Apart from con-
formal curvature tensor, the projective curvature tensor is another important tensor from the
differential geometric point of view and the pseudo-projective curvature tensor is a general-
ized case of projective curvature tensor. A real space form is always pseudo-projectively flat
and a pseudo-projectively flat manifold is always pseudo-projectively symmetric. But the con-
verse is not true in both cases. The study of manifolds with semi-Riemannian metrics is of
interest from the stand point of physics and relativity and have been studied by several au-
thors. Motivated by these studies, in this paper we study the index of pseudo-projectively
symmetric and projectively symmetric semi-Riemannian manifolds with respect to the metric
connection V. The paper is organized as follows: In Section 1, we give the preliminaries about
the index of a semi-Riemannian manifold and Ricci-symmetric metric connection. In Section
2, the definition of the pseudo-projective curvature tensor in terms of projective curvature ten-
sor and concircular curvature tensor with respect to a metric connection V are given. We also
obtain a complete classification of V-pseudo-projective flat (in particular, pseudo-projective
flat) manifolds. In Section 3, we find out the index of V-pseudo-projectively symmetric and
V-projectively symmetric semi-Riemannian manifolds. In the last section, some applications
in theory of relativity are discussed.

1 Preliminaries

Let M be an n-dimensional differentiable manifold. Let V be a linear connection in M.
Then torsion tensor T and curvature tensor R of V are given by

T(X,Y) = VXY - VYX, R(X,Y)Z = VXVYZ - VYVXZ - V [xy]Z

By a semi-Riemannian metric [10] on M, we understand a non-degenerate symmetric (0,2)
tensor field g. In [17], a semi-Riemannian metric is called a metric tensor, a positive definite
symmetric (0,2) tensor field, that is, Riemannian metric is called a fundamental metric tensor
and a symmetric (0, 2) tensor field g of rank less than n is called a degenerate metric tensor.

Let (M,g) be an n-dimensional semi-Riemannian manifold. A linear connection V in M
is called a metric connection with respect to the semi-Riemannian metric g if Vg — 0. If the
torsion tensor of the metric connection V is zero, then it becomes Levi-Civita connection V,
which is unique by the fundamental theorem of Riemannian geometry. If the torsion tensor
of the metric connection V is not zero, then it is called a Hayden connection [6,23]. Semi-

symmetric metric connections [22] and quarter symmetric metric connections [4] are some
well known examples of Hayden connections.
For a metric connection V in an «-dimensional semi-Riemannian manifold (M,g), the cur-
vature tensor R with respect to the V satisfies the following conditions
R(X/Y,Z,V) +R(Y, X,Z,V) —0, 1)
R(X,Y/Z,V) +R(X,Y,V,Z) = 0, )
where
R(X,Y,Z,V) = g(R(X,Y) Z,V).

Let {e\,...,en} be any orthonormal basis of vector fields in the manifold M. The Ricci ten-
sor S and thescalar curvature r of the semi-Riemannian manifold with respect tothe metric
connection V is defined by

S(X,Y)= £ER (ei,X/Y,ei),r= £S(e;,<)
i=l 1=1
The Ricci operator Q with respect to the metric connection V is defined by

S(X,Y) =g(QX,Y).

Define _
eX = QX- -X
n
and
E(X,Y)=g(eX,Y).
Then

The (0,2) tensor E is known as tensor of Einstein [15] with respect to the metric connection V.
S is symmetric if and only if E is symmetric.

Definition 1 ([18]). A metric connection V with symmetric Ricci tensor S is called a Ricci-
symmetric metric connection.

For more details about Ricci-symmetric metric connection see [18].

Definition 2 ([18]). Let (M ,g) be an n-dimensional semi-Riemannian manifold equipped with
a metric connection V. A symmetric (0,2) tensor field H, which is covariantly constant with
respect to V, is called a special quadratic first integral (for brevity SQFI) [7] with respect to
V. The semi-Riemannian metric g is always an SQFI. A set of SQFI tensors {Hi,..., Hg} with
respect to V is said to be linearly independent if

c\NXH\XCgHg —0, Ci,...,q €R,
implies thatci = m- = eg= 0.
Theset {H]j,..., Hg} is said to be a complete setifany SQFI tensor H with respect toV can
be written as H = C\H + m— ~CgHg, C\...,eg€R.
The index [17] of the manifold M with respect to V, denoted by i*, is defined as the number
i of members in a complete set {Hi,..., Hg}. Hence the index iy of the manifold M with

respect to the metric connection V is the maximum number of linearly independent SQFlin a
complete set of SQFI.



2 Pseudo-projective curvature tensor

Let (M, g) be an n-dimensional (n > 2) semi-Riemannian manifold equipped with a metric
connection V. The projective curvature tensor V with respect to the V is defined by [3, p. 90]

V(X,Y,Z,V) = R(X,Y,Z,V) - =~=(S (Y, 2) g(X, V) - S(X, Z) g(Y, V)), ©)
and the concircular curvature tensor Z with respect to V is defined by ([21], [24, p. 87])

As a generalization of the notion of projective curvature tensor and concircular curvature ten-
sor, the pseudo-projective curvature tensor V¥with respect to V is defined by [12]

V* (X,Y,Z,V) = aR (X,Y,Z,V)
+b(s (M 2)g(X,V) -S(X,2)g (¥,V)) ©®)

-~ (M"T +b) (9(¥.2)g (X, V) - g(X,2)g (¥,V)),

where tiand are constants. In fact, we have
V*(X,¥,Z2,V) = —(n-DbP (X,¥,Z,V) + 1+ (n—Db)Z (X,¥,Z,V).

Since, there is no restrictions for manifolds if a = 0 and b = 0, therefore it is essential for us to
consider the case ofa ¢ Oorb @ 0. From (5) itis clear thatifa= land b= —1/ (n —1), then
V* = V;and ifa= l1land b= 0, then V* —Z.

Now, we need the following

Definition 3. A semi-Riemannian manifold (M,g) equipped with a metric connection V is
said to be:

(@ V-pseudo-projectively flat ifvV* = 0;
(b) V —projectively flatifV = 0;
(c) V —concircularly flatifZz = 0.

In particular, with respect to the Levi-Civita connection V, V-pseudo-projectively flat, V-
projectively flat and V-concircularly flat become simply pseudo-projectively flat, projectively
flat and concircularly flat respectively.

Definition 4. A semi-Riemannian manifold (M,g) equipped with a metric connection V is
said to be:

(@ V-pseudo-projectively symmetric if V V* = 0;
(b) V -projectively symmetricif VV = 0;

(c) V-concircularly symmetricifVzZ = 0.

In particular, with respect to the Levi-Civita connection V, V —-pseudo-projectively symmetric,
V —projectively symmetric and V -concircularly symmetric become simply pseudo-projectively
symmetric, projectively symmetric and concircularly symmetric respectively.

Theorem 1. Let M be a semi-Riemannian manifold of dimension n greater than 2. Then M is
V-pseudo-projectively flat if and only if one of the following statement is true:

i) a+ (h—Lp =0,a¢ 0P b and M is V-projectively flat;
(i a+(h—no @ 0,a @ 0, M is V-projectively flat and V —concircularly flat;

(iii) a+ (n —Lp ® 0,a = 0 and Ricci tensor S with respect to V satisfies

s-~g =0, ©
where r is the scalar curvature with respect to V.
Proof. Using V* = 0in (5) we get
0=aR (X,¥Y,Z,V) +b(S(Y,2)g (X, V) - S(X,Z2)g (Y, V))
F{o by (e v) -gx,2ya(r, V),

from which we obtain
- Y AN

@+ (n-0b) = 0. ®)

Case L a+ (n—21)b = 0anda ¢ 0@ b. Thenfrom (5)and (3), it follows that (n —1)bV = 0O,
which gives V = 0. This gives the statement (i).
Case 2. a+ (n —1b ® 0Oand a @ 0. Then from (8), we have

S(Y,Z)=¥¢rg(Y,2). (©)]

Using (9) in (7), we get

Since a @ 0, then by (4), we get Z = 0and by using (10), (9) in (3), we getV = 0. This gives the
statement (ii).

Case 3. a+ (n —2)b @ 0and a = 0, we get (6). This gives the statement (iii). Converse is
true in all cases. ]

Corollary 1. [19] Let M be a semi-Riemannian manifold of dimension n greater than 2. Then
M is pseudo-projectively flat if and only if one of the following statement is true:

(i) a+ (n—IDb = 0,a¢ 0¢ band M isprojectively Rat;
(i) a+(n—Db ® 0,a @ 0, M is real space form;

(iii) a+ (n —I)b ® 0,a = 0and M is Einstein manifold.



3 Index of pseudo-projective symmetric manifolds

Let (M,g) be an n-dimensional semi-Riemannian manifold equipped with the metric con-
nection V and R be the curvature tensor of M with respect to the metric connection V. The
integrability condition for the SQFI H is given by

H((VUR)(X,Y)Z,V)+H(Z,(VUR)(X,Y)V)= 0. (1)

Therefore, the solutions H of (11) is closely related to the index of pseudo-projectively sym-
metric and projectively symmetric semi-Riemannian manifolds with respect to the V.

Lemma 1. If (M, g) be an n-dimensional semi-Riemannian V —-pseudo-projectively symmetric
manifold and n > 2, b @ 0. Then
trace(V(j£) = O,
where U is an arbitrary vector field.
Proof. Using (1) in (5), we get

V*(X,Y,(, V) = aR (X,y,Z,V) +b(E (Y,2Z2) g (X, V) —E (X, Z) g (Y, V))

dr (12)
n{n_7(s(Y-z)g(x.v)-g(x,z)g(Y,v)).
Taking the covariant derivative of (12) and using V yP* = 0, we get
-a(VUR) (X,Y,Z,V) = b(@UE) (Y,Z2)g (X,V) - (VUE) (X,2)g (Y,Y
~ (13
n%”DI) (9(Y,Z2)g(X,V)-g(X,Z)g(Y,V)).
Contracting Y and Z in (13) and using the condition (1) and (2), we have
—a(VUs) (X, V) = btrace(Vu£)g (X, V) - (Vuf) (X,V)
Vir7 14
_ ( I; )a (X, V). (14)
Taking X = Y = eyin (14), we obtain
b{n —Dtrace(V (J£) = 0O,
15
trace(V;jE£) = O,(since b® Oand n > 2).
[]

Theorem 2. Let (M, g) be an n-dimensional semi-Riemannian V -pseudo-projective symmetric
manifold with n > 2 and b ¢ 0, then the equation (11) has maximum number ofsolution and
consequently iy —\n(n —1).

Proof. Using (13) and (11), we find
0= &(VUE) (Y,Z) H(X,V) - (VUE) (X,Z) H (Y, V)
+ (VUE) (Y, V)H (X, Z2) - (VUE) (X, V) 4 (Y, 2))

_ flivirr) (z=Y)H (x, F) =2 (z,X) H (Y, V) (16)

+y(V,Y)H(X,Z2)-g(V,X)H(r,2Z)).

Taking X = Z = eFin (16) and using (15), we get
b(H((Vue)Y,V) - H((yue)V,Y) + (VUE) (V,Y) trace(H))

= ArAM(-nH(Y,F)+g(Y,F)lrace(H)). a7

Interchanging ¥ with Y in (17) and then subtracting the resulting equation from (17), we obtain
H((Vue)Y,V) = H((Vue)V,Y). (18)

Using (18) in (17), we get

b(VUE)(Y,Y) =~ (g (Y ,V)--~H(Y,VO0). (19)

Now, interchanging X with Z, and Y with V in (16) and taking the sum of the resulting equa-
tion and (16) and using (19), we see that the equation (11) is satisfied identically. Thus the
equation has the maximum number of solutions for a V-pseudo-projective symmetric semi-
Riemannian manifold. Consequently, M admits the maximum number of linearly independent
SQFI. So, the index of a V —pseudo-projectively symmetric semi-Riemannian manifold is

1
if=-n(n-1).

[

Corollary 2. If (M,g) is an n-dimensional semi-Riemannian V —-projectively symmetric mani-
fold, then the equation (11) has maximum number of solution and consequently
if = in(n-1).

4 Conclusion

A semi-Riemannian manifold is said to be decomposable [17] (or locally reducible) if there
always exists a local coordinate system (V) so that its metric takes the form

ds2 = X gabdxadxb + E g~dxadxP,
ab=\ o,p=t+1

where gai, are functions of x1, ..., xrand g” are functions of xr+1, ...,x n. A semi-Riemannian
manifold is said to be reducible if it is isometric to the product of two or more semi-Riemannian
manifolds; otherwise it is said to be irreducible [17]. A reducible semi-Riemannian manifold is
always decomposable but the converse need not be true.

The concept of the index of a (semi-)Riemannian manifold gives a striking tool to decide
the reducibility and decomposability of (semi-)Riemannian manifolds. For example, a Rie-
mannian manifold is decomposable if and only if its index is greater than one [17]. Moreover,
a complete Riemannian manifold is reducible if and only if its index is greater than one [17]. A
second order (0,2)-symmetric parallel tensor is also known as a special Killing tensor of order
two. Thus, a Riemannian manifold admits a special Killing tensor other than the Riemannian
metric g if and only if the manifold is reducible [2], that is the index of the manifold is greater



than 1. In 1951, Patterson [11] found a similar result for semi-Riemannian manifolds. In fact, he
proved that a semi-Riemannian manifold (M,g) admitting a special Killing tensor Kjj, other
than g, is reducible if the matrix (Ku) has at least two distinct characteristic roots at every point
of the manifold. In this case, the index of the manifold is again greater than 1.

By Theorem 2, we conclude that a V-pseudo-projectively symmetric Riemannian manifold
(where V is any Ricci symmetric metric connection, not necessarily Levi-Civita connection) is
decomposable and it is reducible if the manifold is complete.

It is known that the maximum number of linearly independent Killing tensors of order 2
in a semi-Riemannian manifold (M n,g) is j*nin + 1)2(n -f2), which is attained if and only
if M is of constant curvature. The space of constant curvature and projectively flat space are
identical classes. Therefore the maximum number of linearly independent Killing tensors of
order 2 in a semi-Riemannian manifold (Mn,g) is *n(n + 1)2(n + 2), which is attained if and
only if M is projectively flat. The maximum number of linearly independent Killing tensors
in a 4-dimensional spacetime is 50 and this number is attained if and only if the spacetime
is of constant curvature [5] or projectively flat. But spaces of constant curvature do not admit
special quadratic first integrals. From Theorem 2, we also conclude that the maximum number
of linearly independent special Killing tensors, that is, SQFI in a 4-dimensional spacetime is 6.

From the physical point of view Killing tensors are important because they provide quad-
ratic first integrals of the geodesics. It is shown that [1] the special quadratic first integrals
can be written as the sum of products of two linear first integrals only if the space admits a
covariantly constant vector. Therefore special quadratic first integrals are useful in the analysis
of the geodesics of given relativistic space-times possessing groups of motion of order less
than or equal to 2.

The charged Kerr solution with or without cosmological constant admits a quadratic first
integral which is irreducible provided the angular momentum parameter is not zero [20]. But
this quadratic first integral is not special [1].
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JocnimkyeTbes iIHAEKC V —NCEBAONPOEKTUBHO CUMETPUYHMX | 30KpeMa V —MpPoeKTUBHO CUMETPU-
YHKMX HaniBpiMaHOBMX MHOroBUAIB, Ae V — Lie CUMETPUYHWNIA METPUYHNIA 3B'A30K Piyui.
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BecTtyn

C. MaHgenbbpoinT (avB. [1-3]) ogep>kaB TeopeMy, siIKa CTBEPAXKYE, L0 Ko DyHKLUia /
HaeXuTb NpocTopy L1Ha 0AMHUYHOMY KO/1i, MOKA3HUK 30KHOCTI T CNeKTpy A MeHLUMIA oan-
HULI | gNnsa KoXKHOro p > A(1 —J1)_1 BUKOHYETbCA

€
IN\f(relt)\at = 0 (exp(-£~p)), €—»0,
0

To/ & 0. lHaKwe Kaxyuu, aKWo GyHKLia i3 npocTopy L1 mMae AocnTb "HEryctuia" cnekTp,
TO BOHA € TOTOXHIM Hy/f1ieM. Lle MoXHa iHTepnpeTyBaTn TaKoXX SAK TBEpAKEeHHS Mpo Te, Lo
PyHKUia Ta Tl nepeTBOpeHHA ®yp'e HE MOXYTb 04HOYACHO BYTK Ay>Xe Ma/IMMU. Takoro Tuny
TBEpPMKEHHSA BigOMI TaK0oXX AK "MPUHLUM HEBU3HAYEHOCTI B rapMOHIYHOMY aHanisi" i oTpuma-
711 A0CUTb NOBHUIA BUK/1ag, B MoHorpagii [3]. MeToto uboro AocnigXXeHHs € 0TpMMaHHSA TBep-
[DKEHHS Mpo HacnigayBaHHSA NoBeAiHKM Ha AiMACHIMA NiBOCi CyMU PYHKLUIA KOXXHUM 3 A04aHKIB
npv NeEBHMX yMoBax Ha Ui PYHKLiT Ta IX nepeTBopeHHA Jlannaca (Un dyp'e).

1 OCHOBHWW PE3Y/IbTAT

BBenemo nosHayeHHA N= {z:Rez< 0, &< Imz < B}, D*B = C\Da”", ©¢ < [3. Yepes
Ep[DaB] Ta E* [Dufi],1 < p < +00, N03HA4YMMO NPOCTOPU PYHKLLiLA /, aHaNITUYHNX BIANOBIAHO
B DUBI 0* B 4na akux

sup < > < oo,

(c) Qinbhnia B.M., Bitauyk T.1., 2015

ne cynpemym 6epeThbcs 3a BCiMa Bigpiskamu 7, W0 fiexkaTb BignosigHo B § af i D* B ®yH-
Kuii / 3 uux npocTopiB MaloTb Mabxe cKpi3b [4] Ha dDa KyToBi rpaHU4YHI 3HaYeHHSs, AKi Mun
TeXx nosHadyaemo 4yepes f(z) i/ € LP[dDa"]. Takox gna dikcoBaHoro ¢ > 0 no3Havynmo
Di D —(,0/ = N—20,0"°3 Doz, D3 = Dq 20:

Teopema 1. Hexain

-+00
diw) = -j= J Qicge—xwdxj € {13}, 0
(0]
im Erll—Qx’é(X)—loo, i e {1:3}, )
(Qu(x) + N 3(x)) eax]nx € L2(0; +00), a > 0O, 3)

npuyomy g\ g3 € Takumm Liinmm dyHKUismm; wo q\ € EI[D\}, gb € E2[03]. Toai ansa Ko-
YKHOTHe3pocTar4ol pyHKLUITK : (0;+00) — (—00;0), Takoiwo s (x) = O(x), X —m+00, Npn
gesakomyc € IR

Mr(x) € L2(0}+O0)e@xdiexp D1 | 2
M3(x) € L2(0;+o0)e@e ™ oexp | -

YmoBu (2) i (3) 3ycTpivaloTbcs B Teopil LMKAIYHMX QyHKLLiLA y BaroBux npocTopax Mapai [7].
Hwx4ye nokasaHo, LW,0 ymoBa (2) € iCTOTHOIO B TeopeMi L. Ham He BioMO, UM MOXKHA Noc/1abuTm
iHWIi yMOBU Ha PYHKLITQ1L, Q3ab0 iX nepeTBopeHHA dyp'e.

2 [OOBEJAEHHA OCHOBHOIO PE3Y/IbTATY

B. BUHHMUBLKNIA [5] po3rsisiHyB npocTip HE(C+),<T >0,1 < p < +°0, aHa/liITUYHUX B
C+ = {z : Rez > 0} dyHKLiA, ANA AKNX

+4-00 i/lp
sup  J [ \f(reig) IPe~Praisin Pirfr < +o0.
-{<9<i i o

®YHKL,IT 3 LbOro MPOCTOPY MaoTb Mabke CKPi3b Ha XK KyTOBi FpaHWNYHi 3HaUEHHS, SKi TaKoX
nosHa4vaemo 4vepes/ i/(/y)e_cr™ € I/(1R). Ansa Bunaaky ¢ = 0, K nokasas A.M. Cegneupbkuin
B [11], HA(C+) cniBnagae 3 npocTopoM Capai B npasita niBnsiowmHi HP(C+).

Nema 1 ([5]). PiBHicTb

G(z) = -4:J g(w)eznwdw
n 300

BM3Hadvae b6iekuito mixk npoctopammn H2(C+) 9 GIEI[D<j] 3 g. TakoxX cnpaBmXyeTbcs ABoICTa
thopmyna

+00

g(n) = /== /1 G(X)e~xwdx.
0
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3ayBaXXuUmo, W0 B opMytoBaHHI Teopemun 1ymosm g\€ E2[Di], <B € £4[E>3] MOXyTb 6y-
TN 3aMiHeHi eKBiBa/IEHTHUMU M BHacnigok nemm 1 ymoBamm Cli(z)e~taz € H2(C+),
Q3()NTE H2(CH).

JoBeneHHs Teopemn 1L 3 nemun 1 Bunnmeae, W0 Asas8 QyHKLUiA, BU3HAYeHUX piBHICTIO (1), npun
BMKOHaHHIi ymoB €t € E2[D]], g3 € E*[D3] cnpaBa)XytoThbCsA PiIBHOCTI

Q:@Q =7 J givieandw, j € {13}.
3D;-

Mokaxkemo, W o hyHKLiA € uinot. CnpaBai, 3 ymosu (2) maemo, wo || = exi(x\npu-
yomy n(x) — —00 Npm X — —00. TOMY iHTerpasi B NpaBilA YacTuHiI piBHocTi (1) npnj = 1
36iraeTbcs abCcoMOTHO | PIBHOMIPHO Ha KOXXHOMY KOMMakTi 3 C. AHa/10rivyHo 3 yM0BM (2) Ma-
EMO, W0  — uis1a. Po3rnaHemo gpyHKLito Q2 = —Qx —Q 3. Toai BU3Haunmo g2 piBHicTio (1),
MOK/IaBLUWM B HiLA ] = 2. JIerko 6a4nTy, L0 Ha MHOXWHI BU3HauYeHHs (PYHKLIA cnpaBeasivsa
PiBHiCTb 2 = —g\—0q$ i TOMy "2 — TeX Lina. 3Biacu oaepXXmo 306pakKeHHS

Qx(@Q) = - i\]}ﬁ | f. (92(w) + g3(w))ezndw.

Ane 3a 03Ha4YeHHAM npocTopiB maemo EN[D3] C E2[Di], Tomy g3 € E2[Di]. 3 uboro sunauBeae,
w,o g3(w)ewz € E1[Di] ans KoxxHoro { € C+, Tomy 3 [9] ogep>Xmmo

J gw)emdw = 07 € C+.
dD\

3Bigcy maemo

QX)) = ---j= [ g2(w)ezndw.
)Y J.

OcKinbKu, K BigMiveHo BULLE, g2 € Lif100 (hyHKLU e, To | PyHKUia g2{iv)ezw — uina ans Ko-
XXHoro (¢ € C+. Tomy BOHa aHaliTU4HA B 3aMWKaHHHI KOXHOIo TMpsMOKYTHMKa
MXx0R = {w :w € Di, Rez > x(x)}. CKopucTtaBWMUCb iHTerpasibHo Teopemor Kowi ana

M X(K)' Maemo
J g2(w)ezwdw = 0.

Tomy Ana KoxXHoro { € C+ cnpaBayKyeTbes hopmMmyna

Ox(Q) = —---\= V[ g2(w)ezwdw,z € C+.

le—[)i\MKM)

3Bigev gna x > 0 Maemo

e« I N R VRN
TABEANWK()) “m

oew = u -fiv, K < 0. 3 BnactuBocTer npoctopiB E2[Dafl] sunnmeae [5], wo d\Nn —Ha) €
L4 —00;0) i g3(u —2ra) € L2(—00;0). Tomy Takox g2(u —2ia) € E2(—o00;0). Togi 3 HEPIBHOCTI
L Bapua, BpaxyBaBwu, Wo q2{u —2/7) € L2(—o00;0), ansa x > 0 oQep>XMMo

) / X(X) >i(X)
= J Y2u—2ia\exudu < | J (u—2ia)\2du -J elxudu

< J g2 - 20 priv - 2P BXXD ci_ FilL-exp (XK (X))

y fi'
AHa0riYHO 04EPXKMMO HEPIBHICTb

@)
13— J/ UN\exdldu < X exp (xx(x)), x > 1.

Jani, ckopucTaBLlncb Teopemoto PyOBiHi, MaemMo

0 0+
2—J li2ix(x) t WNeordv —exp (xx(x)) J 1L J Q2i)p~rKkr v dv
-20 -20 0
0 +00
B
e
D N
< eXp\(/););(X))’Zo i J \efteat]ntrdt m) e-2axt-2r-wdt
< Csexp fxx(lxw/(exp b \>‘exp/<§'e w A2

C3exp | xx(x) —C4>i(x) + "e I .

MepepocTaHHIA nepexif BunamBae (ouB. [8, ¢. 323]) 3 acMMNTOTUYHOI PIBHOCTI
+D -
J e-2at\ nt-2tx(x)eXp j — j expr~~e N | 1+6(1), X—> + 00

Tomy o118 AesaKMX HeBiA'eEMHUX CTasinx C5, €6 MaEMO

[ (X) ] < 6B6XK™ ~ €™ exp N, x>0, (5)

340ro BUNIMBAE NepLUa 3 A0BOAXKYBaHUX DOPMY 1, a ApYyra A0BOAUTbLCS aHa 10T iuHO. Ll

3 AmHaniz ocHoBHOT Teopemu

LlikaBrM A/19 3aCTOCYyBaHb € BMMaAo0K, KO/IM OCTaHHIFA MHOXKHUK B (4) Aa€e HE3HAYHUIA BKa[,
B OLiHKY. 30KpeMa, kKo K(X) = jf Inxia —  MOXHa ogepXXaTu TOUHIiLle TBep>KeHHS.



Teopema 2. Hexain BUKOHYt0TbcA ymoBU (2) Ta (3), npnuomy G\ € H[D\N\ g3 € E*[43]. Toaj
3HalOeTbLCA Take c € R, wio

M i(z)e~iaze%z]nze—~z € H2(C+), n 3(2)eilz* 2Inze-2 € H2(C+), ®)
ae In { — ronoBHe 3Ha4YeHHs fnorapudma B C+.

AoBefeHHA. CKopucTaeMocb TeopemMoto Tuny ®parmeHa-fliHgaensoga (aye. [9,10]) ona pyHK-
it e\ = Qx(z) exp {—"8z In z} e—l(I2—~&Z CnpaBgi, 3 (5) ogepxxumo Pi(x)e~ex € L2(0;+00),
€ > 0. OcKifnlbKM TaKoX 3a ymoBamm Teopemu i nemoto 1Q | (OB _,0¢ € H2(C+), To AN KOXKHOI0

7 €(1:2] o
r . 2 1
(Ve > 0) : sup <I 9i(reP) “exp {—e>-7}dr
M<f 10

Nerko 6aunTn Takox, wo YN € L2[iR]. 3 yboro sunameae, w,o P\NE€ H2(C+). Lum gosegeHo
BUMKOHaHHSA nepLuoi 3 ymos (6), a Apyra 40BoAUTbLCA aHas10r iuHO. |

3ayBaxxeHHA 1. Teopema 1nepecTae crpaBaXXyBaTuUCH, AKLL0 ONYyCTUTU B HilyMoBY (2).

AoBeaeHHA. PosrnaHemo gyHkKuUio f(w) = exp(-e~%w)ew. OueBugHo, / € E2[D(], Mo3Haun-
MO
Fi(z) = 75:‘] fw)e Wedw, j € {1:2;3},
4

ne N\ 12, h — cTopoHu 600 (BignoBigHO NiBMApsiMa, LLLO JIEXUTb Mig, AILACHOK BiCcCHO, Bifpi30K
[icr, ia] i niBNpsiMa, LW,0 NeXUTb Had AiACHOK BIiCCHO), OpiEHTAaLLIA AKUX Y3rog)KeHa 3 A0AaTHIM
o6xogom dDcr. 3a Teopemoto Meni-BiHepa pyHKUiA T2 HanexuTb npocTopy lMeni-BiHepa W2,
TOOTO € N0t PYHKLIE, A8 AKOT BAKOHYETbLCS YMOBa

+M

sup < | R2(reil))ype—paNngpN\ar
0<@<2n 0

Takox nosHaduumo Q;(Q) = exp (- —zlogz) Fj(z), j € {1;2;3}. Toai Tex byaemo matun N2 =
—Q1 —Q3i Tomy ymoBa (3) BUKOHYETbLCA. TaKoX CNpaBaKYyTbCA 300paXKeHHS

Q1) =Pxp (-~zlogz) J exp eNe-N-du,
- a
Q3(0) = exp N-zlogz”® J exp eUt<te » UHN Aduf

TO6TO

B [6] nokasaHo, W0 ANns Aeskoi cTasiol ¢ € R BUKOHYeTbcA Qi(z)elazz—z € H2(C+),
Mna(r)e~UPe~@ € H2(C+). Tomy 3 nnemn 1 Bunameae, Wwo Qx i Q3 3a40BiNIbHAITb BCIM YMO-
BU TeopeMun 1 KpimMm, Mox/imBo, ymoBu (2). Ane (ame. [7]) ansa uiei napy dyHKLiA TBEPOXKEHHS
TeopemMu He cnpaBayKYeTbeA. OTXXe, 418 HUX yMoBa (2) He BUKOHYETbLCS. O

4 B m cH 0B K 1

Hamun ofoep»aHo OLiHKW Ha OiLACHIA oci ANna napy QYHKLUIEA Npy HE3HAUHUX 06MeXeHHSX
(2) Ha KOXXKHY 3 HMX Ta XXOPCTKUX 0O6MEXEHHAX Ha iX cymy (3). NMoKasaHo, W0 A8 4acTKOBOro
BUMagKy K(x) = ~ Inx, a = — KOXHa 3 Q)yHKLLilA B NEBHOMY CEHCi Hacniaye NoBeAiHKy CyMu
Ha [OjACHIA oci. TaKoXX 04epXXaHo OLiHKN BKasaHMX (YHKLIIA y NpaBiiA NiBNJIoWMHI. BkasaHo
Ha ICTOTHICTb YMOBWU (2) TeopeMmun 1L OaepxaHi pe3ysibTaTu MOXYTb 6y TV BUKOPUCTaHI B Teopii
aHaTITUYHMX YHKLIIA, 30KpeMa Npu Aocnig)XeHHi npocTopiB Tuny MapAai.
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We obtain the statement about the imitation behavior of the sum of functions on the real half-line
by each of the summands under some conditions for these functions and their Laplace transforms.
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Dmytryshyn R.I.
SOME PROPERTIES OF BRANCHED CONTINUED FRACTIONS OF SPECIAL FORM

The fact that the values of the approximates of the positive definite branched continued fraction
of special form are all in a certain circle is established for the certain conditions. The uniform con-
vergence of branched continued fraction of special form, which is a particular case of the mentioned
fraction, in the some limited parabolic region is investigated.

Key words and phrases: branched continued fraction of special form.
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Introduction

Several works are devoted to the establishment of different properties of branched contin-
ued fractions (BCF) of special form. For example, [1] is dedicated to the investigation of BCF
with real positive and complex elements, [4] — to 1-periodic BCF of special form, [Z] — to
functional BCF with nonequivalent variables and BCF of special form with complex variables,
[6]— to positive definite BCF of special form.

In this paper, using a representation of the approximants of BCF of special form (defined
in [6]) through composition one- and two-dimensional fractional-linear maps, we have estab-
lished that under certain conditions the values of the approximants of the positive definite
BCF of special form

1) S Ao 2 gp=h—-3-- pre- o)
s +21- & +S_D2 -+ bip Fzip HD-

r 2 &mp-bzrp

where ars,r > 0,s> 0,r@ 1, r+s> 2 brsr > 0,s> 0,r+s > 1, are complex numbers, zrs,
r>0,s> 0, r+s> 1 are complex variables, are in a certain circle. Moreover, we investigated
the converges uniformly of the BCF which is a particular case of the positive definite BCF of
special form in the some limited parabolic domain.

1 Properties of BCF of special form

We show that under certain conditions the values of the approximants of the positive defi-
nite BCF of special form (1) are in a certain circle. For this we prove the following lemma.

© Dmytryshyn R.1., 2015
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at aosad

tr,sH(*V+I,s—) — ~r,s—1 %r,s—1 /  "Oos("Mls/”0,s+1) — "0s "t" "Os - .
AV +1,5—1 Us ~0s+l

wherer > 1, s> 1, and let
yoi = Imzoi > O,ys= Im2> O,yrs= Imzrs> 0, r>0,s>0,rp Lr+s > 2,
BB=Imbrs>0, O<grs<Il,r>0s>0,r+s> 1 ()]
ars= (Imflrs)2 5 sv+<Gods—<Go(™ —SvH<GtHs—F0/Y r—®S — ' r S—2'

where 6pg is the Kronecker's delta. Iflma;i;SH > Bi,s+igi,s+i,
Im WrSro+ij+Sro A Bt-Sro+u+Sogr-Sro+u+Sro' wherer > 0, s> 0, r +s > 1, then

Im trs(Vri/S9 > Brsgrs "tyws/ AN 1/ s> 0, 3

Im tOs(wis/wOs+i) > B0sg0s +yos, s> 1. 4

Proof. The validity of the inequalities (3) follows from [5 Lemma 17.1]. We show that the
inequalities (4) are valid. It is obvious that for arbitrary s,s > 1, provided that B-isgis +vyis > 0
the image of half-plane Im wNs > B-sgis + yis under the transformation t — is the circle

+ <
W  2(Msgls +yis) 2("Msgls + vyis)

Hence Im (1/wis) < 0. Let all yos > 0. By the lemma for arbitrary s, s > 1, we have

T\ . . 7Os(l-g0s)  » 80s+1
Imi% +H > £o,s+gosH——-—>-=" o= > .
Bie(1 —gx) +y3s  PPB(L “ o) +¥B
Therefore,
s S A0sH |
"OpH + 2("0s(l - gOs) + yos) 2(/30s(l - gO0s) +yo0s)
or
AOsH S 1 ©)

©S+1  2("M(1 - gos) + 30s) 2("0s(l - gOs) +y0s)

The image of (5) under the transformation w = 1/z is the half-plane

'7(5,s+l
m
" OsH

I < "Gs(l - gOs) +yos-

Next, for arbitrary s, s > 1, we have

&~
Im tOs(wlsr waiS+i) = BB +yos - Im ————Im 05+l > Bo8+yos - Im 05+l > [ogom
Ns NOosH li;0s+

2
Going to the limit in the last inequality for yos — 0, we obtain Bo5—Im > [3osgosm Thus,
2

Im tOs(wls/ iil0sH) = Bo8+yos — Im~ - Im > [osgos + yos, which had to be proved. ™
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Since the images of half-planes Im W\q > B-iogw + yto and Im w0 > /?0igoi + yoi under the
transformation t = to(w) = 1/w is respectively circles (nested or coincide)
1
t+ < i+ <
2(Bi0#10 + Yi0) 2(Boto + Y10r 2(Boitol +Y01) 2("or™ot + Yoi)
for Blogw + Yo > 0, Bolgol + Yoi > 0, then the image of transformation
) 1 1
t = t0{ww,w0li) = —— +—.
Wo  ICoi
is the circle
t  KPuwo8io + Yo + Bolgot +yoi) < Pwgw + Yo + fagOl + 301
2(B1o#10 + Yi0) (Boifol +Yoi) —2(Bi0#10+Y10)(/301#01 +YGi)/

which we denote by Ko(z), where { = (z10 z0L, z2/ 2N\NZ02, mmk is infinite—dimensional vector.
For arbitrary n, n > 1, we define Kn(z) as the map of the region

ImwN\n > BNONor im W-SoHXsH8Q A Ar-iSro+HLs+Hro&r—"oH/S+HW

wherer > 0, s> 0, r +s = n, under the transformation

i 1 4
Tnewn+JO'W, |, -. -, WQ,,+) = o + &
&1 +Z01L - ®" 1% bo2 +Z02- ®2 2
a03 A0,m-1 aln

- boz3 +2z03- &3 3 AO,n-1 + 0m—1 - O i 1 flo,n+I

VOon + ZOn--Wﬁ---———-ﬁ ol
where
2 2 2 2
hr-K _ 11 u3k R =t amkiPkk O0< k < n- I
k + dfc — +Z22%&— +Z3t— —bn kk + Zn-kk ~ wn-k+H k

Applying lemma land taking into account (3)and (4), we have
KO(z)DK 1(z)DK2(z)D ... 6)
Since (see [3, pp. 15-16]) Th(00,00, ..., 00) = fn(z), where /,, (z) is the nth approximant of the

-2
BCF (1), then/,,(z) € Kn(z), n > 1. Hence we prove the following theorem.

Theorem 1. If the conditions (2) holdsi, where
B3> 0, AAsgis +vyis > 0, Boeu +yoi >0, yrs>o,r >0, s>0, r+s> 1,

then the approximants fn(z),n > 1, of the BCF (1) satisfy the inequalities

A s TtZ'" 21
In [6]the notion of the nth denominator Bn(z) of the approximantfn({), n > 1, of BCF ()
is given. By arguments similar to the proof of the [3, Theorem 4.8], we can show that following
theorem holds.

Theorem 2. If the conditions (2) holds, where
Bsgrs >0, r>0,s>0 r+s> 1,
then the denominators Bn({), n > 1, of the BCF (1) are different from zero for

Imzrs>0, r>0s>0r+s> 1

2 Positive definite BCF of special form and the parabola theorem

Putting zrs= O,brs=i,r> 0, s> 0, r+s> 1 in BCF (1), we obtain

1 . 1
do + -, Oe - p>0. @)
s
*i_sezj-ms >_r=[2)?
Using the equivalent transformation [5, pp. 19-20], we putpo = i,prs= i,f > 0, s> 0, r +s >
1, and BCF (7) reduce to
—/Po + hp= , p> 0. ®)
[Ty 00 @i?‘p
I+ +D ¢
s=2 1 A r=2

Next, putting po = 1/(1 + ®1), Pos — 1/(1 + ®d+1)/ s > 1, we reduce the fraction (8) to the
fraction with partial denominators equal to unity

—j
1+ ¢

-r'do + ©
Cs

1 + O3-i)(1 + OB)
+
+D

Let
5] —Reaxs < -, |RI<M, M>0, r>0,s>0,rpl r+s>2 (10)

Then according to [5 Theorem 181] the continued fraction ®5 s > 0, converges uniformly and
according to [5, Theorem 14.3] the value of these fractions and of its approximants are in the
domain g—1]< 1, ¢ 0.

We take an arbitrary s,s > 1. The fraction 1/(1 + ®8) we write in the form w = 1/(1 + 2).
Hencez = (1 —w)/w. Since |z—1 < 1,{ @ 0O, then

1—w

1 <1, wel or P—2N< \NWNwQ 1.
w

Letw = x +iy. Then

—oyl < X W\ (1529

2 2 1 2

+i<-9. -3 =

1
3

Thus, the value of the fractions 1/ (1 +<8s), s > 1, and of its approximants are in the domain
w—2/3] < 1/3,wo 1

We put 1/(1 + ®8) = rselfs s > 1. Since the line y = kx touches to the circle 3x2—4x + 1+
3y2= 0for k= x1/y/3,then —Tc/6<cps< n/6, s> 1.

The following inequalities are valid for all s > 2

1 9 (Pc_t (0% m o, . AT 1)
<CoS —— -——- , < opsH,8< r
@+o8 1)1 +9P @ <



Indeed, let x = rcos @, y = rsin @. Then the circle equation 3xz—4x + 1+ 3y2 = 0in polar
coordinates we write in the form 3r2—4rcos@ + 1= Oor

2cos@ *+ J 4cos2 @ —3 m A
r= ———J1— —35———— -——, — < @ < —.
3 B-Y- 6
The inequalities (11) are equivalent to the inequalities
2cos %1 = y/4cos2ys i — 32cos g5+ yN":0s2 (- 3 < ffs-i + ffs N
3 3 2

where —1/6 < (ps-I/ &< 71/6,s > 2.
To prove inequalities (12) is sufficient to show the validity of following inequalities

2cos g5 i + nf4cos2 45 i - 32cos 5+ a/4cos2gs—3 N 2P \+ 98
—————————————————————————————— 3 - cos 2 w

where —/6 < <PsH/\Vs < 7r/6,s > 2
Since y/4cos2¢@ - 3 < cos for -n/6 < @ < m/6, then, estimating the top left side of the
inequality (13), forany - /6 < g5_i, @B< m/6, s > 2, we have

aB@s | a8Em< P2 or os(mi —(@ < -

That is, the inequalities (13) holds.
Applying relations (10) and (11), for any s > 2 we have

al &-'(«Ps-1+f) 1 5 g1 + i>s Ti T
-Re - OB~— —— < -cos2rs ‘y, —7(<<Ps-\,<Ps<-7>
@+e81)A+PB 2 2 6 6

- <M, M>0
(i + ®81) (T + ds)

According to [7, Theorem 4.40] the continued fraction

1+ o

als
1+A (1 +05-1)(1 +75)

s=2 1

converges uniformly. Hence, the fraction (9) converges uniformly too. From equivalence frac-

tions (7) and (9) we conclude that BCF (7) converges uniformly, if the conditions (10) holds.
Hence, we have, if we change the notation, the following theorem holds.

Theorem 3. BCF

PO + ————————- B-—- ' OP= — 1T-T"

converges uniformly for all arsin the domain
Pm=(z€C: - Rez< 1/2, K < M}

for every constantM > 0.

[
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Problem statement

While we studying in Banach space E the equation
X —Fx @

with the nonlinear operator F : E — E, in general, the following condition is often used

| &T—m_}xrf = d. @)

For example, condition (2) for a = 0 satisfies the integral equation
*(0 = /(0 + /D K(t,s)x7(s)ds, 0< 7 < 1, 3
J

which was studiedby M.A. Krasnoselsky [1] (see also references in [1]), B.Z.Vulykh [2],
C.A. Stuart [3] andothers. In particular, C.A. Stuart [3] uses the resultsobtained forequation
(3) while investigating some boundary values problems for equations with partial derivatives.

In the present paper, we apply methods suggested in [4, 88] to the study of equation (1)
with the operator F satisfying condition (2) under the assumption 0 < a ~ 1, which makes it
possible to get some specification and generalization of respective results from [4, §8]. It also
allows of applying the obtained results to the equation

X(®) = f(t) £ [ K(ts)xy(s)ds +Jf Ki(t,s)x(s)ds, 0< 7" 1
D D

1 Main results and their explanation

Definition 1. The norm of the pair of elements from E is |]yzll, satisfying the following con-
ditions: a)ify,z € E, the inequalities are |MI »~ N2\ |HI * |lv.zi; b) the norm |lyzll
is monotone when introducing into E x E semiorderedness of pairs (y,z) elements from E,
generated in this or that way of semiorderedness in E.

© Kopach M.I., Obshta A.F., Shuvar B.A., 2015

For example, if the norm |Jy,Z]] is introduced with the help of one of the formulas

lly, zH= max{llyll. I}, liyzll = AP+ NN, p > 1, @)

and the semiorderedness of pairs (y, z) is defined as (y,z) < (u,v) fory ~ u, z~-vor (y,z) »
(u,0) fory ~ u, z " v, then conditions a), b) are satisfied. With this semiorderedness, the
space E x E is a fully regular space if E has this property.

Theorem 1. Suppose that: 1) there are nondecreasing with respect toy and nonincreasing with
respect toz continuous operators Ti(y,z), T2(y,() :E X E E, such that

Ti(x,x) = T2(X,X) = FX, X € E; ®5)

2) there exists M > 0, and from the inequality |hzl]l > M it follows that
1ITi(y, 2, T2zl ~ W,z 3) ify,z € E, then Tr(y,z) ~ T2(y,z); 4) there are elements
u,v € E, forwhichu”~T r(u,v),v”" T2(c, u); 5) simultaneous equations

Y= T\{y,2), z = T2(z,y) 6)

have no more than one solution; 6) equation (1) has at least one solution. Then the unique
solution x* € E of equation (1) satisfies the estimates

YA ymNA Ao Nzn, M 0,1,..., @
where the sequences {y,, }, {z,,} are built with the help of
yOo=u, z0=v, yn¥l= Ili(Y,,Z,), 2Z,+i= T2(zny,), n=0,1,.. €))
At that the sequences {yn}, {zn} converge in E to x* by the norm.
Proof. Let us prove the inequalities
YOANYiAN AN yH A o] ZgNhN NN LA ZNAN ZnHE A - ©)

If n = 0 from conditions 4) and (8) we obtain yo = u * 7i(yo,zo) = yi,zo = v T2(zo,yo) =
Z\ Assuming thaty,,\" v,,, zn_i  zn, based on (8) and 1) we get

YL = TN\ON,Zn) A Ti(yn—+Zn—) —WV  zni = T2(z,,,y,) ~ T2(zn_i,yMi) zn.

By induction, we come to a conclusion that the inequalities (9) are valid forany n € N.
Let us make sure that the sequences {yn}, {zn} are limited by the norm. If starting from
some number n =N, all the members of the sequence {(y.,,z,,)} satisfied the inequality

H&z N M, (10)

then the sequence {(vy...z,,)} would be limited by the norm, and the sequences {yn}, {zn}
would be limited by the norm. Assuming that forany N > Owe have n > N so that

Hy..z.11>M, (11)

let us consider two mutually exclusive cases. Let in the first one exist no more than a finite
number of the members of the sequence {(yn,zn)}, for which ]|ly..zn] » M. Then starting
from some number n — N inequality (11) holds. In virtue of (8) and condition 2) we obtain

IBN+HL,Z N+1E = I (YN, zN), T2zN,y NIL ~ - 11Y..z 1]
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Assuming that |JyN+bzNAJ] ~  [[I/N+Hc-iizN=+it-1 I/ we shall similarly find that

IIN-+HfeH' ZNHeH T = \N\TI(yN-+bz N-+K)FT2 (ZNHYNHONN A WVYN-b Z NN

By induction, we come to a conclusion that the sequence {(yn,zn)} and the sequences {yn},
{zn} are limited by the norm. Suppose that the sequence {(yn,zn)} has an infinite number of
members for which inequality (10) holds as well as an infinite number of members for which
inequality (11) holds. It means that this property pertains to the sequence {yn}, {zn} Let us
choose arbitrary w, and n2, N\ < n2, for which, for example, |WMi] * M, \Y2J "~ M. Let us
have MBso that N\ < n$ < n2and |Ws] > M, from (9) we obtain yny * vy,3 < v,,2 Based
on Lemma 81 [4, p. 37] we get |lv.31 " Uy + |21~ 2M. This proves that the sequence
{v., } is limited by the norm. It is similarly proved that the sequence {zn} is also limited by the
norm. For the fully regular ordered space E, the monotonely nondecreasing sequence {yn}
and the monotonely nonincreasing sequence {zn}, which are limited by the norm, have limits
y* and z*, y*, z* € E, which are components of the solution of system (6). The solution x* € E
of equation (1) and equality (5) mean that (x*,x*) is the solution of system (6). Since system
(6) has a unique solution, then y* = z* = x*. The proof of the theorem is complete. O

Theorem 2. Suppose that: 1) there are nondecreasing with respect to y, nonincreasing with
respect to z continuous operators T\(y,z),T2(y,z) : E X E —E, such that

Ta) N Fx N T2(x,x), XEE; 12)

2) conditions 2)-6) of Theorem 1 are satisfied. Then for any solution x* € E of equality (1)
we have inequalities (7), where sequences {yn}, {z,.} are built with the help of formulae (8).
Besides, the sequences {yn}, {zn} converge to the components y*, z* of the solution (y*, z*) of
system (6) and the estimatesu » y* * x* A z* N v are valid.

Proof. Let us build an iteration process with the help of

o= ye= X un+i= Ty eny,), YnH = T2(Yne,), n=0,1,..,

where x* is the solution of equation (1). From inequality (12), nondecreasing with respect to y
and nonincreasing with respect to z properties of operators Ti(y,z), T2(y,z) are observed by

WA UNA - A N A YNELA o/ UBA GEA A g A LA N=01,...

As in the proof of Theorem 1, we find that the sequence { } converges to its limit ¢* without
its monotone increase, and the sequence {ipn} converges to its limit ip* without its monotone
decrease. At that (¢*,*) is the solution of system (6) and ¢* ~ x* ~ ip* Besides, for the
sequences {yn}, {zn}/ built with the help of formulae (8), we can fully repeat relevant con-
siderations in the proof of Theorem 1 and reach the same conclusions concerning y*, z* as a
component of the solution (y*,z*) of system (6) and about inequalities (9). Thesolution of
system (6) being unique, it makes us possible to state that ¢* = y*, ¢* = ¢*.

The proof of the theorem is complete. O

Theorem 3. Suppose that: 1) condition 1) of Theorem 2 is satisfied; 2) there are linear positive
relative to w € E, nondecreasing with respect y, nonincreasing with respect to z operators
Ai (y, 2)w, A2(y, z)w, for which ifx, y,z € E the following inequalities hold

—Ai(Z,y)(Z - y) n Ti(Z!X) - TX(le)i T2(X,Z) - T2(X,y) n AZ(Z,y)(Z - y)l

3) thereisM > 0O, so that from the inequality |Jzy]] » M follows
IIMNY.2) - (Ai{z)y) + A2{zy)){z - ¥), T2(y.2) + (Ai(z,y) + A2(z,y))(z - Il < Il
4) there are u,v € E, such that
u”® —(Ai(v,u) + A2(v,)){v-u) +Ti(u,v), v (Ai(v,u) + A2(v,u))(v - u)'+T2(v,u);
5) simultaneous equations
y= -{Ai(z,y) + A2:.y))(z - y) + Ti(y,2),
z - (Ai(z)y) + A2(zy)(z - y) + T2(z.y)

have in E XE no more than one solution. Then if there is a solution ofequation (1), itis unique
and thesequences{yn}, {zn} converge to it without increasing and decreasing respectively.
These sequences are built with the help of formulae

—(Ai(z,,,yn) + A2{zn,yn)){zn —y,,) + Ti(y,.,Z,,),
(Ai(zn,yn) + A2(zn,yn))(zn -yn) + T2(zn,yn), n=0,1,...

yn+1

z,+i
i/yo = u, Zo0 = v. Besides, there are estimates (7).

Proof of the sequences {yn}, {z,,} being monotone and limited by the norm in fact follows
along the lines of respective considerations from the proof of Theorem 1. That's why vy,, t y*,
znl z* (y*,z* € E), and (y*,z*) is solution of system (13). If x* is the solution of equation (1),
then (x*, x*) is the solution of system (13), and this system can have no more than one solution.
The proof of the theorem is complete. O

2 Applying limited elements to equations in KN-spaces

Theorem 4. Suppose that: 1) E is KN-space of limited elements and in E X E the norm is
defined with the help of the first formula from (4); 2) condition 2) of Theorem 1and condition
1) of Theorem 2 are satisfied; 3) ify * z (y,z € E), then Ti(y,z) » T2(z,y). Then there is
extreme (seeg, e.g., [4,p. 22]) inE X E solution (y*,z*) of system (6), the components of which
belong to some segment |4, a] C E, and for any solution x* € E of equation (1) we have

—anN X*Na y*AX*F AN 7R 14
Proof. If we replace condition 2) of Theorem 1by the condition: if |lyZ] ~ M we have

HTiy.2). 2@yl < 1yl (15)

then any solution (y,z), y,z € E of system (6) is within D = {(v2lllyzll < M, vy, z€E}.
If for some solution (y,z) (y,z € E) of system (6) we have |lyzll ® M, then from (6) and (15)
we obtain |lyzll = 1ITi(y,2,. T2V < llyzll, which is impossible. It allows us to draw a
conclusion that any solution of system (6) belongs to the segment —=-,a]. If eis a unit of the
space E of limited elements, it follows from what has been said that

"M dlyzlle® Me,  H* liEle< WZ2\\e < Me.

Let us denote Me = d. Considering obvious inequality —a " a, inequality (15) and determina-
tion of domain D, we shall have

[F(=AM)| < IITi(—a,a), T2(8, —)Ne< |- ss]le = Me = a,



(a, —a) | M ITi(—a, a), T2(a, —9N\Ne”" |—aa\\e—Me —a.
This implies that —a * T\, a), a ® T2(a, —a). Toprove existence of extreme solution (y*, z*)
of system (6) on the segment |, a], it is enough to use iterations (8) settingu = —, v = a
in them. As any solution of system (6) has components belonging to the segment |, a], we
draw a conclusion that (y*,z*) is extreme in E x £ solution of system (6). The proof of the
theorem is complete. O

Theorem 5. Suppose that condition 1) of Theorem 4, condition 1) of Theorem 2 and condition
2) of Theorem 3 are satisfied. Then thereis an extremeinE x E solution (y*,z*) of system (13),
the components of which belong to some segment |4, a] C E, and for any solution x* € E of
equation (1), there are estimates (14).

The proof differs from the proof of Theorem 4 unessentially.

Remark

If T-[(v,2), T2(y, z) are fully continuous operators, then for the solution of equation (1) to
exist, it is enough to satisfy condition 2) of Theorem 1. In this case, the operator generated by
the right member of (6) will turn some sphere S of the radius M from E x E into compact in
E x E set Dj. Let us choose the number M\ > M so high that the sphere S\C E x E contains
the sphere S, as well as the compact, and therefore limited, set D j. Thus, it turns out that the
operator generated by the right member of (6), turns the sphere S into itself. Therefore, let us
apply the Schauder principle.

Obtaining results supplement and specify results [5, §21] (see also references in [5]).
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ON A NECESSARY CONDITION FOR L?(0 < p < 1)-CONVERGENCE (UPPER
BOUNDEDNESS) OF TRIGONOMETRIC SERIES

In this paper we prove that the condition J OW™\+i)i-p = °(1) (=0(1)), is a necessary

condition for the 1/(0 < p < 1)—convergence (upper boundedness) of a trigonometric series.
Precisely, the results extend some results of A. S. Belov [1].

Key words and phrases: trigonometric series, U —eonvergence, Hardy-Littlewood's inequality,
Bernstein-Zygmund inequalities.
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1 Introduction and Preliminaries

Let

>  cne'x (y + = ancosnx + b, sinnxJ €]

be a trigonometric series in the complex or real form respectively, and we use the following
standard notations forall n > 0

an = cn +C—n,

bn — (@ G/
A«(p) = y2(N\enRp + \oi\),
rn= \Ninp HXn2= 2([c,p +\cny),

An(x) = c,einx -fc-ne~mx = ancos nx + bnsin nx,
n
S,,(X) = c0+ = AL,
k=1
1
£
$n(x) = > (asinkx —b”coskx) = — ~ (ckelkx —c_keMkod\.

k=1 it=oV 1

The square brackets denote the integer part of a number.

(c) Krasniqi Xh.Z., 2015
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For/ € L2n the L1—metric is defined by the equality

MI L= I/l =

Regarding to the series (1) Belov [1] has proved a necessary condition, expressed in terms
of its coefficients, for the L1-convergence or L1-boundedness of its partial sums proving the
following statement.

Theorem 1. Ifn>2 isan integer, then

2n J
—£— - < 100 max N - Sm|l
K=[H W ~ k\+ 1 m=[«/2]-1.2n
In particular:
1If
K-S ml=o(l) (=0(1)), )
then
2n r
> T—étt = o) (= ° (1) respectively) . 3)

2. Assume that series (1) converges (possesses bounded partial sums) in the L1—metric,
then condition (3) holds.

Also the author has considered the cosine and sine series

y + g“nCDSnx, (]
1 r=1
00
2 n™Minnx, ®)
n=1

where for the series (4) or (5) the coefficients an are the same as in the trigonometric series
(1) except for coefficients of series (5) which are denoted an instead of bn, and the following
corollary has been proved by him.

Corollary 1. 1 Assume that series (4) or (5) satisfies condition (2), then

2 haN+i = (0 (1) respectively). 6)
fem

2. Assume that series (4) or (5) converges (possesses bounded partial sums) in the L1-
metric, then condition (6) holds.

For/ € 12,0 < p < 1, the | / —metric is defined by the equality

/i IM2n A2

I/k? = WD = O NN m

Of course I - Jppfor 0 < p < lisnot anorm, it does not satisfy the triangle property, and it is
known as quasi-norm.

The above statements, for r—th derivative of the series (1.1), has been generalized by present
author in [2Z]. But nothing seems to be done so far concerning Lp—convergence (0 < p < 1)
of the series (1) in the direction as Belov did in [1]. Therefore, our main goal in this paper is
studying of Lp—convergence of the series (1) forO0 < p < 1.

Our main tools in proving the main results are Bernstein-Zygmund's inequality and Hardy-
Littelwood's theorem in the spaces U (0 < p < 1),and Hp (0 < p < 1), respectively.

Lemma 1 ([3] or [B]). Let Tn(x) be a trigonometrical polynomial of ordernand 0 < p < 1
Then the inequality \Nn\a< Gri\NIn\Wholds true.

Lemma 2 ([4]). If ©(Q) = EfLockzk' X\« lanc*¥W e HP,0 < p < 1, then

fA(k + )P~2%R< C "~Ip
k=0

Throughout in this paper Cp denotes a positive constant that depends only on p, not nec-
essarily the same at each occurrences.

2 Main results

We begin with the following helpful statements.

Lemma 3. Foreveryme N and 0 < p < 1, we have

ikx —ikx
mm E c*e
k= k=0
1 Mm m I
> —i-max -k +iy-*"\ckX
' U=o i-0 J

Proof. The proof of this lemma is an immediate result of the Lemma 2. Indeed, we have that

ikx 1 L2t m ikx 1 r2n .
kE:OCtEI ~ on io - cke dx~ on o c cke—ikx dx
1 f2n m
L s ) 5 0€T-RX g
2n Jo k=0 =
Vi 1 m
D Geifm—kx > * E(T - K +1M-reX
k=0 p cPk=0

The inequalities for EM=0cke one can prove in the same way in view of equality

m m

E Cke—~tkX E CKEiKX
k=0 p k=0
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Lemma 4. Given an arbitrary trigonometric series (1) and arbitrary natural numbers n and N

(8). From the equality
such thatn < N < 2n+ 1. Then for 0 < p < 1 the following estimates hold:

L
_ _ 2% ddix= (Sm(x) - S,j— + 1 - S,,_i
kmaxl\I IS0 - SKWp < Cp max lIc- S, il @) —n asj (SmMx) = S 0x) (Sot(x) = S.._1(x))
=n,..N —  k=n,.., ’
and (7) we get
max < C max 11Sni 8
nmax E ¥ |x P max e ®)
NN 2 max ciEdX < 2p\ max  |lgn- Sil]>+ max |8V~ S, ilIp}
m=n,..N 4. = im=n,..,.N " m=n,.,
N\
ma —e-4 < C lISm-S,,_i|L .
nX NG P IR b © < 2p(1+Cp) max [iSn- S, ilIp,
max lISc-S,, il lp <C PL_rgn_?X N s -1 (10 which is the required estimate. The estimate (9) we can prove in the same manner as the
""""" estimate (8). It is sufficient to use the equality
/P
fOXKRACKYD < Cp max ||Sfe-S..lL, an £ - ' . SR
Tn(k+ 1~ M-, ke 21__n Ce X= (S¥YM - s.._1(x)) - 1Sot(x) - S,,_i(x)J ,
f  ktip + je-tip < CJISN S, ilL, (12) therefore by the reason of similarity we omit the details.

(10). By the equality
where Cp is a positive constant depending only on p.

Sot(x) - S,_i(x) = m (Sm{x) - am(x))
Proof. (7). Let m, n be two natural numbers such that m > n. Using the equality m—
L wi 1 + E T(SKX) ~0*(*)) - (sn-ix) - M+iw)
- Ko
S,._I(x) - Sot(x) = - SmXx) - S'_j(x)) + ¥ fofc+ 1) - Sn_i(x)) "
we have that
Lemma 1and well-known inequalities ifm4d1 m 11 l
ISm—S,,i]lp< 2p < — lISot—\MWp+ E ~ ™n-I —on—adpr
IflP + [b]o, Tio<p<1 n k=n *
if 1 1
N+ DR < < . = 2p <lISm - Oml|p +IE P11~ —"lip IS«-1 —aon-1up r
k2n (Ja]* + |bJO), ifB3>1 n J
i/ m I\

we have that || - Sh_1]p < CpL]|c- S, _i]lp, and <2 I\/J\/Z +k AkJ k=l i’:lx lISc- ~ 1 p-

- i f mil 1 T Thus
11S,,.1 - Sotllp < 2?2Cp<|Im—S,._illpH Zv i j II"fc ~ Sn-illp r
" k=n ' max lISc—S,,_i|[p< 5-2p max [|S*—akN\a for n—L1
o~1 i \ k=n,...,N fc=ij-1,.../N
NCETTIH L, mex ~ lp The case when n >2 can be treated in a similar manner. Indeed, since forn < N < 2n +1
we have
k=nk + 11 k=n...... m “ N n+1 2
Thusforn < N <2n + 1 2+ E i<2 + _n <_3+ﬁ<4’
k=n
N-1 .
T then the estimate (10) holds for all n > 1.
1+ E QT <1+ 4-fN - 0 <2 o
k=n n-- (11). From the estimate (8) we have
we obtain N _
max IS, i - Stlp < Cp_max [IS*- Sn-i|[P. Eag x <O max [8-S, L
=n =

.......... j=n



On the other hand, by the Lemma 3 we obtain

HL :=

Ir=

]
Hence, from (13) and (14) we get
L {k+1 n?-p) (15)
\fc
In a similiar manner one can find the following estimate
/N c p
= (¥ls pzey  sSCRLINls. oSl (K)
It is obvious that from (15) and (16) follows

/ N i—im . i \

which proves the estimate (11).

N .. N
(12). The equality S*(x) —S,,_i(x) = E + E c_je~llxand Lemma 3 give
J=n J=n

(= {N-+I1F K)2-p) A CHISN - S,,-1 lip,

and
"N Xtp \1/p
(N +T- XK2-p) iC HIsN - s»-illp-

Using the last two estimates we obtain

1£(N +1 - *H PI ne
This completes the proof of the Lemma 4. |
We shall prove now an another lemma which in this paper do not need us.The only its

importance is that it extends the Lemma 2 in [1] from the case p = 1tothecase0< p < 1 It
may be useful for the other aspects.

Lemma 5. For any trigonometric series (1) and arbitrary natural number n, the following esti-
mate holds (0 < p < I):

IK ~J|lp < Cpi—-——E 11- -%/2]Iip+2£=[«/2] ..... k- s[/2]p 1. 17)
If
k=[w5<...,n g -S[E2lp= o(l) (-0(1)), (18)

then condition (20) (see below in this paper) is satisfied.

Proof. Applying Lemma 1 to the equality

il-l
(n+1) 6.6 -0.(0) = E SYX) - spr;

/=i
a—
+n(s,(x)-s2(x))-2 £ (Sy(x)-SL../2I(x)),
y=[s/2+1

we obtain
+DIIS, oallp<4p 1™ I SHAlIP+ ST  S[W2]lip]

+2 p E ISy —SL./2]lp < 4?1 E
=[n/2]+ lj=1

+21+p(n-[n/2]- 1) max |I- S Ib

ySy —Sl//21lp + WIS] —SL../2 b1
J

(& lls/ —S[/2]lip + (2n — 1) I lls* - S W1.

Supposing that (18) holds, then from (17) obviously the estimate (20) holds. O

The main results of this paper are the following statements which extends Theorem 1 and
Corollary 1from thecasep = 1ltothecase0O< p< 1

Theorem 2. Ifn> 2isanintegerand 0 < p < I, then

n ilp
Afc(p) <Cp max K-Sfcllp. (19
In particular:
1If
K-S, I1p = o(l) (=0(1)), (20)
then
¢ p = °Cl1 (= ° (1) respectively). (21)

2. Assume that series (1) converges (possesses bounded partial sums) in the
1/(0 < p < 1)—metric; then condition (20) holds.

Proof From Lemma 4, according to the estimates (11) and (10)

Y"1 Luj) 1 <f T ™ ™ \ofxup
ksn(k+1-n)2-Pj- P\Lfm(K+1-n)2-Pj (22)

C _SniNW < C % afclp.
< Cp\ max, NK-SniN\p<Cp, _max, I b



On the other hand according to the estimates (12) and (10), for 2[n/2] + 1 > n we have

1lip / \1/p
M p) N\ <c [/ f lotlp + Ic-tjP

JHIT(C + 1" K)i-r) VHS](" +1" K)2~PJ (23)
NCp Sn—Sr«i_ i < Cp max [IS* —(1/dlp
ulJ P K k=[5]-1,....,9

Adding (22) and (23) we obtain (19). In addition, from (20) and (19) imply (21).
Let the series (1) converges (possesses bounded partial sums) in the L?(0 < p < 1)-metric,
then
K,, = Sll, < 2?{ I/ - s |IF+ IK -/]|p} = o(1) (= 0(2)).

Therefore (20) implies (21). This completes the proof of the Theorem 3.1 O

The following corollary is a direct consequence of the Theorem 2.

Corollary 2. 1 Assume that series (4) or (5) satisfies condition (20), then

& = o(l) (= 0(1) respectively). (24)
(- e D

2. Assume that series (4) or (5) converges (possesses bounded partial sums) in the
Lp(0 < p < 1)-metric, then condition (24) holds.
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MPO MEPMAHEHTHICTb AVWCKPETHOT CUCTEMW MOAENI XMXKAK->XEPTBA 3
HEMOHOTOHHOIKO oYHKUIEK BMNAMBY TA HECKIHYEHHWM 3AMISHEHHAM

Y po60Ti po3rsIAHYTO CUCTEMY PiBHAHb, SKa € AUCKPETHUM aHasI0roM MOAENi XMKaK—>XepTBa 3
HEMOHOTOHHOIO (PDYHKLIEI BIU/IMBY Ta HECKIHYEHHUM 3ami3HeHHAM. [ocnimkyeTbes npobsiema no-
6y0BM YMOB MepMaHeHTHOI NOBEAiHKN AMHaMIYHOI Mogesi. YMoBa NepMaHeHTHOCTI 3abesnedye
06MeXeHICTb PO3B'A3KIB 3BepXy Ta 3HU3Y, a/1e NpU LibOMYy BUMarae o6 po3B'aA3KM 3aimwasines rno-
CTilAHO gofaTHUMW. [N 0TPMMaHHA OOCTAaTHIX YMOB NMepMaHeHTHOT NoBeAiHKM PO3B'A3KiB CMCTEMM
BUIKOPUCTaHO METOAM, SKi 6a3yloTbCA Ha 3aCTOCYBaHHI TEOPeM MOPiBHAHHSA.

KrtouoBi c/oBa i hpasn: Modesib XUXKaK—KepTBa, MepMaHeHTHICTb, PYHKLiOHa/IbHUIA BIUB.

Kyiv National Economic University, 54/1 Prospect Peremogy, 03680, Kyiv, Ukraine
E-mail: alexni@ukr.net

Bcrtyn

JocnigKeHHA pis3HOMaHITHUX MUTaHHb AWHaMIYHOT B3aeEMOAIT MK efleMeHTaMn mogeni xv—
XaK->kepTBa 6y/10 Ta € 04HMM 3 AOMIHYIOUUX, K B €KOSI0ril, TaK i B MaTemMaTu4Hiia 6ionorii [3].
AKTYya/IbHUMW € NMpo6s1EMU STI0Ka/TbHOT Ta r106asibHOI CTIKOCTI, NepiogMYHOCTI, NepMaHeHTHOI
rnoBesiHKN Po3B'A3KY MoAeni Xmxkak-xepTsa [7, 8]

ICHYIOTb UncneHyi 6ioNorivHi Ta gizionorivni ceigoyTsa [1, 2, 6], W0 y BUNagKax, Kosim Xv-
YKaKn BUMYLLIEHI B NOLWYKax 3400M4i 4innTucs XXepTBok abo KOHKYpYBaTK 3a XepTBY, 6i/bLu
MOBHOIO, B MOPIBHAHHI 3 K/1aCMYHOKO MOAENSI0, € MOAE/b, Y SKiLA TeMIM NPUPOCTY YNCENbHOCTI
XMKaka Mae 6yTn yHKLLIEID He 04HIET 3MIHHOT YMCEbLHOCTI NONY NSl XXepTBU | He ABOX He-
3a/1EXKHUX 3MIHHUX YMCESIbHOCTI XepTB Ta XMXXaKiB, a 0g4HI€l 3MIHHOT — BigHOLIEHHSA vncesb-
HOCTI mony AUl XXepTBu A0 nonynauii Xxmkaka. JaHy GyHKLiI0 3BUYalAHO Ha3nBaloTb Tpodi-
YHOI (PYHKLIE XMXKaKa ab0 (YHKLIOHa/TbHUM BIJIMBOM.

Y po6oTax [4], [5] po3rnsanaeTbcsa Moaesib XMXKaK->XepTBa 3 HECKIHYEHHMM 3anisHEHHAM

x'(t) x(t) a(t) —b(t) J K(t —s)x(s)ds (% ($$) y(0/

y(0 [-d(o + &g vii-Tdiii)

Y MIKp0oO6IoNoriyHiA AgnHaMmiLi Ta XiMiYHIIA KiHeTULI (YHKLiIOHa/IbHUIA BIJIMB OMNMUCYE Mor-
JIMHaHHSA cy6cTpaTy MiKpoopraHiamamm. B 6inbLliocTi BMNagKiB TpodivuHa pyHKUia g(u) mo-
HOTOHHa. X04a, iCHYHTb eKCNepeMeHTMN AKi NOKasylTb, L0 HEMOHOTOHHI BI/IMBU Tpansio-
TbCA Ha MiKP06io/10riYHOMY PIiBHI: KO/ KOHLLEHTPaL,isi MOXXUBHOI PeHOBMHU 40CATaE BUCOKO-
ro piBHA MOXe TpanuTuca ePeKT CroBiSIbHEHHS 3pOCTaHHA Ki/1IbKOCTI MiKpoopraHiamie. Take

(i)

y4do

© HeHs O.1., 2015
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4acTOo CrOCTEPIraeTbCA KOSIM MIKpPOOpPraHi3aMuy BUKOPUCTOBYHOThCA A/151 HEMPOAYKTUBHOIO P0O3-
K1aAaHHA abo A5 BOAHOI0 OYNLLEHHS.
JANA KOXXHOT 06MeXXeHOoi nocnigoBHOCTI (1) BBEAEMO NO3HAYEHHS

A" = supa(n), al— inf a(n).
neN "eN

Y [aHii/A pob6oTi po3rnsgaeTbCcs cMcTeMa PiBHAHb, SIKa € AUCKPETHUM aHas10rom cuctemm (1):

x(n +1) = x(a) exp |a9(a) - b(n) E K(s)x(n - s) - c(n)g (*1) , o
Ky + 1) = y(s) exP { ~d(n) + &N)g (YikT(")i) } 'n =012

ae x(mn),y(n) — npeAcTaBAsioTb Wi/IbHOCTI MONysIALLIA XXepTBU Ta Xuxaka, n > 0, a(n), b(n),
c(m), e(n), d(n), T(n) — obmMeXXeHi, HEBIA'EMHI MOCNIA0BHOCTI Taki, L0

O<al<all O<bl<byu O<cl<cyy, O0<dl<du O<el<ei O0<T <T“

JAunckpeTHa pyHKL A K{-) 3a40B0/IbHAE HACTYMHI YMOBU:
(Hi) K(s) € P,00) i obmexeHa gnas= 1,2,3,..
@

(H2 Z B =i.
s=1
B gaHiia poboTi gocnigyKyeTbca nepmMaHeHTHa noeegiHka po3B'a3Kky (x(m),y(n)) cuctemu
PiBHAHb (2) 3 N0OYaTKOBMMW YMOBaMM:

X(®) = 91(6), y(8) = 92(6), (pi(0) >0, @,8) >0, =12 ©)

onaeez-={..—=2-—-1,0].

Ons cuctemn (2) 3 404aTHUMM NoYaTKOBUMUW yMoBamMm (3) po3B'aA30K (x[n), y(n)) icHye ans
BCiX M > 0, MOXe OyTM 04HO3HAYHO NO6yA0BaHWIA MOC/1iA0BHO i, 3rigHO 3 BUAOM PiBHSHb CU-
cTemu (2), 3a80B0sIbHSE ymoBu X(n) > 0, y{m) > 0, n > 0.

dyHKUis g(u) cuctemu (2) € HEMOHOTOHHOIO | 3310BOJSIbHAE TakuM ymoBam (NM):
OgeC”a0O, +00),R),£(0) = 0;

(ii) icHye Taka ctanap > O, wo (u—p)g'(u) <o0opgnawn o p;
(iii) lim g(u) —O0;

U->+@
(iv) h'(u) < ognascix m> 0, Tah(0) = lim geh(u) =

Po3rnsHemo pyHKL,it0

B

7 +w
sAKa, AK HEBaXXKO MepecBigvnNTUChL, 3a40B0s1bHAE yMoBU (i)-(iv).

Ha ocHoBi ymoB (NM) MoXHa AoBecTu, LW,0 Npu BUKOHaHHI HepiBHOCTI dIL< elg(p) piBHA-
HHA g(u) = y Mae gBa goaaTHi KopeHi 0 < N\< r2

HonomixHi pesynbrTaTtu

O3HayeHHs 1. CucTeMypiBHAHBb (2) 6yAeMo Ha3MBaTy NepMaHeHTHOLO, SKLW,0 iCHYOTb A0AaTHI
ctani Wi, Mj, i = 1,2 TakKi, wo

ra < lim infx(n) < lim supx(n) < My,
— «—>EH00 v '’ — n->+o00 r 4

ra? < nI_|m infv(n) < «_II supy(n) < M2,

4nsa 6yab AKoro po3s'asky u(n) = (x(n),y(n)) cuctemu (2) 3 404aTHUMU NOHATKOBUMU AaHU-
MU

MOHATTA NepMaHeHTHOCTI rpae BaX/IMBY pPosib Y MaTemMaTuyHilA 6ionorii. BionoriyHo ue
O03Hauae, L0 KO/IM cucTemMa npu B3aemogii pisHUX BUAIB CTasla Y MEBHOMY CeHci, To BCi BUAU
BWXMBaOTb Y A0BIOCTPOKOBOMY MPOMDKKY 4acy.

Nema 1 ([9]). Hexain {x(n)} 3anoBonbHAe ymoBu x(n) > 0 Ta

x(n + 1) < x(n)exp (r(n) @ —ax(n)))
anan € [wi,0o),aea > 0, {r(M)\ — gogaTHa NocigoBHICTb. Toai

,,,I_iJ,nmSUPX(”) < a’;iexp {r1—1}.
Nema 2 ([9]). Hexaia {x(n)} 3a40B0/IbHSIE YMOBMU:
x(n + 1) > x(m)exp (r(n) 1 —ax(n))), n> No,

Ta nl_!mmsup x(n) < M, x(No) >0, No € N, geaM > 1, \r(N)\. — goaaTHa Noc/iA0BHICTb.
Toai lim infon) > Nep{rli @ —M)} .

rt-¥+oo0

Nema 3 ([10]). Hexaia {x(n)}, {b(n)} — HeBia'eMHi MocNigAoBHOCTI, BU3HaueHiHAa N, ¢c > 0 —
CTana. AkKuio

Vi
x(n) <c+ Z b(s)x(s), ne N,
TO s=0
n—i
x(nN) <c [+Db(s)], neN.
s=0

Newma 4. Hexain gnsa {x(n)} BUKoHyOTbCA ymoBu x(n) > 0 Ta

x{n+ 1) > x(n)exp j r{n) *-1 +ag o (G

anan € [uw, 0o), ge {r(n)} — gopaTHa nocnigoBHicTb,a > 0,K > 0,g'{u) > Onpun < p. Toai

lim~Ainfx(«) > ——— —————- exp {—ru} 5)

N—>-+o0

npng L <P
u<p

JoBeneHHs. Hexalk icHye Take /q € [, +00), wo x(/g + 1) < x(lo)- Toai 3 (4) BUNamBae, L0



BMKOpPMCTOBYOUM OCTAHHIO HEPIBHICTb OTPUMYEMO TaKy OLLIHKY:

K
x(h + 1) > x(h)exp |r(Z0) (-1 +ag )}

LA
> x(I0)expj rm~"-1 +ag xh) - 6)
K
> x(10)exp {-r 1} > -exp{—1} = T.
9 (1) wn<p

Jdosegemo, wo x(n) > T gna Bcix N € [/o,+°°): MpunycTUMO, WO ICHYE 4YMCNO
po € [/o, +°0) Take, wo x(po) < T. Toai pO > /0+ 2. Hexaii p0O— HalAMEHLLE Liifie YUNC0 TaKe
wo x(po) < T. Togi x(po —1) > x(po), 3BigKN BUMSINBEE, LLLO 3aCTOCYyBaBLUW BULLENpUBEAEHI
nepeTBOpeHHA A0 X(po), oTpmumMaemo, w0 X(po) > T. OTPUMYEMO MPOTUPIYUS.

PosrnsHemo BUMagokK, koM X(n + 1) > x(u) gna Bcix n € [Ai,+00). Hexald icHye
1i>“i'a)x(”) = L. CTBepaAXY€EMO, L0

(
K
L>
r (i) wn<p
Mpunyctumo npotunexHe: L <  wh\}— - Togai icHye uncsno NO € N Take, L0
£ val u<p
x(n) <
S G ) n<p
ansa Bcix n > Ng. 3 4bOoro BUN/MBAE, LLLO
X(n +1) > x{n)exp j m~*-1 +ag )} @)
MepetiwoBwin Ao rpaHnui B (7), o4epXUMO:
K

liw x(n) > ——-

1
0 o
OTpMMYEMO NPOTUPIHYS.
BpaxoBytouu, w0 exp(—u) < 1404 rm > 0, MaEMO:

fim  x{n)N> K > K —exp(-rll), ®

MN—-+o00 .
(I) n<p ro’ (i) uep

L0 i A40BOAUNTDb cnpaBea/IMBICTb TBepaKeHHS (5). [

0 cmoonom i pesynbTaTwu

Teopema 1. AKLL0 BUKOHYETbLCA YMOBa
al—b"Mi —cllh(0) > 0, 9)

e
& exp {all—1}

bl > K(s)exp{-sfl«}

s=I

ToAj iCHYE Take 4uncsio

[a1—cuh(0)) exp {ali —clh(0) —exp [all—clh(0) —i}} L)
m , Yy
E K(s) exp {—s(al —huM\. —clih(0))}

s=1

o ansapo3B'sa3ky X(n) cucrtemu (2) BUKOHYHOTbCS OLiHKN:

M\.< lim infx(n) < Ilim supx(n) <
yi— 00

n—»+o00

AoBepeHHs. Po3rnisiHemo BunagoK KoM g'(u) > 0gnsBeix u < p, ge u = @n- Todi 3 mepwioro
PIBHAHHA cUCTeMU (2) MaEMO:

x(n + 1) < x(n)exp{aH - clh(p)}.
3BiAcY OTPUMYEMO HEPIBHICTb
x(n) < x(n —s)exp{s(au —clh(p))},

3 AKO0T BUMNJINBaAE, LU0
x(n —s) > x(n)exp{—s(fl“ —clh(p))}.
MigcTaBMBLLM OCTaHHIO HEPIBHICTb Y MepLue pPiBHAHHSA cucTteMu (2), 0TPUMYEMO:

x(n + 1)

< x(n) exp <a(n) —b(n) E K(s)x(n) exp  s(@“—clh(p))] —c(n)h(p) >< x(n)
s=1 (11)

- h i1l- > BA*(N ~ - clh
xexp J (A(n) - c(n)h(p)) i a4 ch(p) A > (Mexp {~s(au - clh(p))}
3 ymoBu (9), maemo al—cuh(p) > a' —buM\ —clih(0) > O; Tomy 3acTocoByuun Jlemy 1 Ao
HepiBHOCTI (11) MaeEMO HaCTYMHY OLHKY:

< —exp{al—ch(p) —i)__ —

u<p i k (s) exp {—s(au —clh(p))}
s=1

M\

IJ.i_%)sup x(r)

PosrnsHemo Bmnagok, Konv g'(u) < 0 ansg BCiX U > p. 3 Mepworo piBHAHHSA cuctemn (2)

Maemo:

X(n + 1) < x(n)exp{an}.
Togai

x(n) < x(n —s)exp{sfl“},
3BiAKN OTPUMYEMO

x(n —s) > x(n)rxp{—sau}.
MigcTaBMBLUM OCTaHHIO HEPIBHICTb Y MepLue piBHAHHS cuctemm (2) oTpUMYEMO:

x(n+ 1) < x{n)exp ., —b{n) X K(s)x(n)exp {—sfl"}]j

i /. DblfE
< x(n)exp <a(n) 17 — - E K(s)x(n) exp {—Sfl"}



3acTocoBytoun Jlemy 1 ao HepiBHOCTI (12) MaeMO HaCTYIMHY OLLIHKY:

i exp {an—1} _ 4.
lim supx(n) < ® = —— 22— =1

vwep i k(s) exp {—

s=1

B3aswm max(M|, — M\ OTPUMAEMO OLLIHKY:
lim supx(n)<Mi. 13
Jim supx(n) (13)
Hexath g'(u) >0gnsa Bcix 1 < p. 3 oyiHkuM (13) BUNMBAE, W0 A1 A0BiSIbHOI0 € > O iCHYE

Take Ni > O,Ni €N, wo x(n)< Mi  +epnascixn > L. Tomy 3nepwioro piBHAHHA CUCTEMM
(2) maemo:

x(a + 1) > x(m)exp{a(n) —b(n)(Mi + €) —c(n)h(0)}
> x(n)exp{al —bu(Mi + €) —cuh(0)};
3BiAKM OTPUMYEMO
x(n —s) < x(n)exp{—s(al —bu(Mi -f&) —cllh(0))}.
MigcTaBMBLUM OCTaHHIO HEPIBHICTb Y Neplie PiBHAHHA cuctemm (2), OTPUMYEMO:

x(n + 1) > x(n) .
x exp |a(n) - b(n) MiC(s)x(n) exp j —-s(al - bu(Mi +¢) - cllh(0))] - c(n)h(O)J

i (14)
> X(n) exp< (a(n) —c(n)h{0))

X _ -c»/r(o) 8 K(s)x(n)exp “pb“MI+¢e)" °Uhm1}) }-

3 ymoBu (9) maemo st — cuh(0) > al—buMi - cuh(0) > O, Tomy, 3acTocoBytoun Jlemn 1Ta 2 oo
HepiBHOCTI (14), 0TPMMAEMO HacTYMHY OLIHKY Npn € —» O

, —cuh(0
lim infx(n) > - ©)
>0

u<p EK(s)exp{-s(fli-b“Mi-c«/i(0))}
|

s=

x exp ja" —c;/z(0) —exp j &U—c;/i(0) —1j j = M\
YmoBa aM > 1 nemu 2 Habyae Burnsgy

exp {all—clh(0) —1}

i —c;/r(0) (15)

OcKinbkmn > X ans BeiX X € ]R, To 3BiAcK BUMNJINBAE, LLLO HEPIBHICTb (15) BUKOHYETbCS.

3 nepLwworo piBHAHHSA cMcTemMu (2) MpU U > p MaeMO:

x(n + 1) > x(n)exp{a(n) —b(n)(Mi +¢€) —c(n)h(p)}
> x(n)exp{al - bu(Mi + &) —cuh(p)}.

3BigKn BMUMNNBAE, LL,0
X(n —s) < x(n)exp{—s(al —bu(Mi + €) —clih(p))}.
MigcTaBMBLLM OCTAHHIO HEPIBHICTb Y nepLue pPiBHAHHSA cucTemMu (2), 0TPUMAEMO:

x(n + 1) > x(n) "

X exp |a(n) —b(n) K(s)x(n) exp s(al —bu(Mi +€) —cuh(p)) j —c(n)h(p)J

> x(n)exp/(a(n) —c(n)h(p))

X(2_/-c»% ) EBLA *(n)exP - b*(Mi+g) -c“% ))}j j.

3 ymoBu (9) maemo al—cuh(p) > al—buMi —cuh(p) > al—bltMi —cuh(0) > 0. Tomy, 3acTo-
coBytoun Jlemu 1Ta 2 Ao HepiBHOCTI (16), OTPUMAEEMO HACTYMHY OLiHKY Npu € -» 0
1—clih
lim infx(n) > @ al—clih(p)
I U>P DU I K(s) exp {—s(al —buMi —cuh(p))}

s=I

x exp j am—clh(p) —exp Jan—clh(p) —i] | =

Basaswum min(T\,T?) — T\ = My, oTpUMaemMo umcsio (10) Ta oL iHKY

«=>:+00

lim infx(vn) > mi. @

Po3rnsHemo gpyre piBHAHHSA cuctemu (2) npn T(M) —K

Teopema 2. AKLL0 BUKOHYIOTbLCA YMOBU

du
~T < g(p) 18
Ta
au - binti +du > 0, 19

TO iCHYKOTb Taki umcna

M2= expj 2(ellg(p) - d")}

Ta
m2 = min(m\\,m2), (20)
ae
mi exp {fc (g) -d"}
ra2 exp {-du},
- (?) wop
mi

m7 _
1  exp {24 —blmi +du)}’
0 AN5 po3B'A3KY y(n) cucTeMu (2) BUKOHYHOTbLCS OLiIHKU

T2< n_lwgo infy(n) < n-|>”Poo supv(n) < Mo-



AoBefieHHs. 3 Apyroro piBHAHHA cucTeMm (2) a4ns Beix n > 0 MaeMmo:

y(n + 1) < y{n)exp{—dl +eug(p)}. (21)

3pobmBLLM 3aMiHYy 3MiIHHKX z(n) = 1ny(n) B (21) OTPUMYEMO HEPIBHICTb:

z(n + 1) < z(n) +euwg(p) - di (22)
Akw,o B3aTU € = elig(p) — d1 b(s) = {A?l' ;E %f—- ' ' HepiBHICTb (22) Habyae Burnsay:
z(n+ 1) < & b(s)z(s) +C. (23
s=0

BpaxyBaBLwimn ymoBy (18) #* < y < g(p) Ta 3acTtocyBaBLM Jlemy 3 A0 HepiBHOCTI (23), oTpuma-
€MO OLLIHKY po3B'a3Ky {(n):

{(n) < 2{eug(p)-dhr
a 0TXKe i OLiHKY po3B'aA3Ky y(n):

lim supy(n) < exp I\2(e||g(p) —d])Jl = M2 (24)
n—>-+00 :

Po3rnsaHemo Bunagok, konv g'(n) > 0 ons Beix n < p.

3 oyuiHoK (17) Ta (24) BunsmBae, W0 AN AoBi/IbHOro € > 0icHye Take N > 0, NN € N, wo
Ana BCiX N > N\ BUKOHYOTbCA OLiHKN X(M) > TN—eTay(n) < M2+ fm
Tomy 3 Apyroro piBHAHHSA cmcTemMu (2) Maemo:

1 — -
yin + 1) >y(n)exp{e g M2 £ du};

3BIAKN OTPUMYEMO OLLIHKY:

fuy~¢
y[n - k)< y(mexp j -k (e'g qu,jl2+£’ ~d") }°

MiacTaBMBLLM OCTAHHIO HEPIBHICTb Y Apyre piBHAHHSA cuctemMun (2), oTpPUMYEMO:

Yy +1) > y(n)exp { e(n)g ™E ~d(n)
y{n)exp { -k (elg ($L_f) - d") }
s (25)
(M\—E)exp j k (elg ( Mr+£ «i»)}
>y(m)exp I d(n) -1+ -"g
y(«)

3acTocoBytloum femy 4 0o HepiBHOCTI (25) Ta BpaxyBaBLUM YMOBY (18) 0TpMMaEMO HacTynHy
OLIHKY Npn € -» O

m\exp - -*m)}
lim 'miy(n) > exp {—di} = T2.
00 n<p

E-1 (2) uep

Po3rnsiHemo BMNagoK, Kosim v > p. Beegemo 3amiHy z(n) = Toai 3 cnucremm (2) Maemo:

z(n +1) = z(n) exp Ia(n) - b))~ K(@)x(n -s) -

. 2(n) 4-d(n) - em)# (zin - K)) L.

3Bigcy BUNMBaE, LLLO
z(n +1) < z(n)exp{au —bl(M\.—¢) + d1f}.

3po6umBLLM 3aMiHy 3MiHHUX &(N) = Inz(n) B 0OCTaHHIIA HEPIBHOCTI OTPUMYEMO:

{(n +D<=Zb(s)l(s)+c, 26)
s=0
ge c = all—bl(T\ —¢) +du, b(s) = | (i, 2=< 2< n—1,

BpaxyBaBLiun ymoBy (19) Ta 3acTocyBaBLUM JlemMy 3 40 HEPIBHOCTI (26), 0OTPUMAEMO OLLIHKY
po3B'sa3Ky ¢{(n) npun £ —» 0:
(n) < 2(an—blin\+ d1,
a 0T>Ke i OLiHKY po3B'a3Ky {(n):

lim supz(n) < exp |2(a“ —bIM\+ V)] — M2. 27
3 ouiHKK (27) BunnmBae, Wo 418 AoBisibHoro € > OicHye Take N\ > 0, N\NEN, w0 A4Ns BCix
N > N\BUKOHYETbCHA < M] + &. 3Bigcy BUNAnBaE:
BN X 5 ___ e
vtn) > M* +£ - M2+¢g
Mpn € —0 maemo:
lim infy(n) > ——%+—---—--—-—-——-—--—-- — — 4——mt.
MHom y(m exp {2 (av—b @\Y-du) I

B3aswu min(m2, mj"), orpymaemo umncno (20) Ta OLiHKY:

«_Ilm infy(n) > ni2

Y po60Ti AocnigyKeHo B/laCTUBICTb MEPMAHEHTHOCTI CUCTEMU PI3HULLEBUX PIBHAHb Moaerni
XMXKaK—>XXepTBa 3 HEMOHOTOHHOK (DYHKLLIEH BM/IMBY Ta HECKIHYEHHUM 3ani3HeHHAM. Ha ocHo-
Bi TeopeM MNOpPIiBHAHHSA N06YyA0BaHO HOBI YMOBW NepMaHeHTHOI MoBeAiHKY gUHaMidHOT Mogeni.

BigkpyTnMu 3a1mMwialoTbCa NUTaHHA NO6YA0BU OLLIHOK Po3B'A3KY Y(M) pIBHAHHSA XMKakKa
cuctemn (2) npm t(n) ® const Ta NOKpaLeHHA OTPUMaHMNX Y po60Ti YMOB Ta OL,iHOK.
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Nenya O. |. Permanence of a discrete predator—prey system with nonmonotonic functional responses and
endless delay. Carpathian Math. Publ. 2015, 7 (1), 91-100.

A discrete-time analogue of predator-prey model with nhonmonotonic functional responses and
endless delay is considered in the paper. We investigate the question of obtaining conditions of per-
manent behavior of the dynamic model. The condition of permanence provides the limiting of the
solutions but it requires the positiveness of the solutions. Sufficient conditions of permanence are
obtained when the functional response function is nonmonotonic. The methods based on the es-
timation theorems are used to receive the sufficient permanent conditions of the solutions. These
results are applied to some special population model with endless delay, some new results are ob-
tained.

Key words and phrases: predator-prey model, permanence, functional response function.
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OSYPCHUK M.M.

ON SOME PERTURBATIONS OF A STABLE PROCESS AND SOLUTIONS OF THE
CAUCHY PROBLEM FOR A CLASS OF PSEUDO- DIFFERENTIAL EQUATIONS

A fundamental solution of some class of pseudo-differential equations is constructed by a method
based on the theory of perturbations. We consider a symmetric a-stable process in multidimensional
Euclidean space. Its generator A is a pseudo-differential operator whose symbol is given by — |/,
where the constants a € (1,2) and ¢ > O are fixed. The vector-valued operator B has the sym-
bol 2rcj/lla—21. We construct a fundamental solution of the equation ut = (A + (a(-), B))n with a
continuous bounded vector-valued function a.

Key words and phrases: stable process, Cauchy problem, pseudo-differential equation, transition
probability density.
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Introduction

Let A denote a pseudo-differential operator that acts on a twice continuously differentiable
bounded function (cp(x))xeKd according to the following rule

(ADX)=££ @ +v)-0)-(M )) 7 (€]

where ¢c> 0,1<a < 2,ifeN are some constants, K = —————————————— ———— —————— and

V isthe Hamilton operator (gradient). Here (-, -) denotes the scalarproduct in Rd.

It is known that the function u (t,x) — J ) (Y)a(t, x, y) dy, where

8C*'XYI " (20 / k/ , N TIMA*UT )

is a solution of the following Cauchy problem

dt _AXu(t,x), t> 0,xeRd, @)

u(0+.x) =@(Xx), x€ IR

for any bounded continuous function (@ (x))xelRd.

YK 517.9, 519.2
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If an operator acts on a function of several arguments, then it will be provided by a corre-
sponding subscript, for example, Axin (3) means that the operator A is acting on u(t,x) as the
function of the variable x.

Note, that the function (g(t, X,y))t>oxeRd,yeRd serves as transition probability density of a
Markov process in Kd, called a symmetric stable process. The operator A is the generator of it.

Let us consider the equation

at = AXu(t,x) + (a(x),Bxu(t,x)), t> 0, x€Rd, (]

with some  -valued function (a(x))x@K; and d-dimensional pseudo-differential operator B
of the order less than @

In this article, we consider the case, where the a is abounded continuous function and the
operator B is defined on a differentiable bounded function (<p{x))xe*d by the equality

B )W =2c_, <px+y)-f(x)
v " ooxJr* NN+ * *

Note, that A = 2div(B).

We construct a fundamental solution of equation (4) by perturbing the transition proba-
bility density of a symmetric stable process. The fundamental solution of equation (4) was
constructing in [2] under the assumption that the function a satisfied Holder's condition.

Symmetric stable processes were perturbed by terms of the type (a(x),V) under various
assumptions on the function (tf(x))*eJRd in many papers (see, for example, [1, 3, 5, 6]). The
perturbation of stable processes with delta—-function in coefficient is constructed in [4].

1 Perturbation of a stable process

We consider a function (G(t, X, y))t>0,xeRdyeRdas a resu”™ °f perturbing the transition prob-
ability density g(t, x,y) of a symmetric stable process, if it is a solution of the following equa-
tion

G{t,x,y) = g(t,x,y) +J/O dr J/Rdg(t - T,x,2)(BzG(T,z,y),a(z))dz. ®)

Now we define a function {e(x))xeRd by the equality e(x) = j*yjfl(x) forx € such that

Ja(x) | @ 0and an arbitrary value (with preservation of the measurability) otherwise. Then the
equation (5) takes the form

G(t,x,y) = g(t,x,y) + Ji at JfRdg(t - T,x,z)(BzG(T,z,y),e(z))\a(z)\dz. (6)
o

It is easy to establish the following equality using the representation (2) and integration by

2y —
parts Bxg(t, X,y) = —Z——)—(g(t, X, y). Denote by Vo(A X, y) a function that is given by the equal-

ity
VO(t,X,y) = (B)@(t,x,y),e(X)) =" - X - g(t,X,y). (7)

We will construct the solution of (6) in the form

G(t,x,y) = g(t,x,y) + f at f g(t-T,x,z)V(r,z,y)\a(z)\dz, ®
Jo JRd

where the function V (t,x,y) satisfies the equation

V(t,x,y) = Vo(t,x,y) + J]:) dr J'Il;dVo(t—T,x,z)V(T,z,y)\a(z)\dz. ©
The equation (9) can be solved by the method of successive approximations, namely its solution
will be found in the form
)]
V(t,X,y) = Z VK(t,x,y), (10)
k=0

where Vo(t, X, y) is defined by the equality (7) and for k > 1 the following equality

Vifc(i,*,y)= Jio at JfRd\/O(t—T,x,z)Vk_1(T,z,y)\a(z)\dz

is valid.
The well-known estimate (see [2]) (f > Oa S Rli,y e JRd, and N > 0 is a constant)

s Ny (4)

allows us to write down

* - /\
IV.(E“y)l < In ((W FrpATarr < 2 & (tlhec + y_x|)d+a 1’

Then, we get that the inequality
IN r. 1 ) .
IV>((* )] < \N\— Jo drJKi ((t_ Tl/<+ R_ Xiy+x_r|r_,(T,z,y)\iz

is true, where |H| = sup i} |
xeRd
In order to estimate Vkwe make use of the following inequality (see [2])

1 10
d
jl(:) dr]cﬁid (i —) Vo F Xx—xPd+*-1 (Vo + x—xXNd+«-1 g

<Cr£-"(i+IB(v

+ad \ N JJ (fU* + y—
valid for 6 > — /a, where C > 0, and B(-, mis the Euler beta function. We obtain for k > 1
IVift TLIL- (2N)t+1(c llall)k 1 to. n liep (A
@ R\(tl/a + y—x|)}d+a1JJj V «

(Z\C\\a\\tl/a)k’\ / m /1 n\\ . .
Note, that rk= —————————~ ~JJ is positive and the relation

. 2NC] ] |iL/a / k 1 N\
Iim ———— = |im __ll__lll__a _______ ”_g ______ —(1+-B(-,-))=
fc>00 Ik k-"0o k+ 1 y O N\O alJ

is true. Therefore, the series on the right hand side of (10) converges uniformly in x € Rd,
y € Rdand locally uniformly in t > 0. Thus, the function V, given by the equality (10), is a
solution of the equation (9). In addition, the following inequality

IV(,xry)l< CT" /a+ " _ x"d+a_ 1 (12)

is proved for x € Rd,y € IRfand O < t < T, where Cj is a positive constant that may be
depended on T > 0.



Remark. The constructed function V(t, x, y) is the unique solution of equation (9) in the class
of functions that satisfy inequality (12).

Define the function G(t,x,y) by the equality (8) where the function V(t, x,y) is defined in
(10). Then we can perform the following calculations

(BxG{t,x,y),e{x)) = VO(t,x,y) +J dxj*V Of{t - x,x,2)V(X,z,y)\a(z)\dz

V{t,x,y).

We here took the possibility of applying of the operator B under integral, which is proved in
the following Lemma.

Lemma. The equality
f dx t-x,X,2)V(X,z,y)\a(z)\dz = dx f Bxg(t - x,X,2)V(X,z,y)\a{z)\dz
BxJO gRé]( WV (x,z,y)\a(z) JO 1y xg ( WV(X,z,y)\a{z)

is true.
Proof. Let us consider a set of operators {Be : € > 0} that act on a continuously differentiable

bounded function (<kx))*eRrd according to the following rule

e(X +Uu) - o(X)
y

e N dy.

It is clear that £Iim (Be(p)(X) = (B<p)(x) for all functions ¢, described above, and x €
The inequalities (11) and (12) allow us to assert that

u (o(t - X,x +u,z)-g(t - x,X,2))V{X,z,y)\a(z]
uNdH+a
const t—T t—Xx
pldaad ™ (£ _ r)lc+ x—X—INd+a » ((t —1) Vo + Jz—XNHL
1

X
(xXI/*+\y-z\) -1

It is easy to see that the right hand side of this inequality is the integrable function with respect
to (u, T, Q) on the set {Jm|> €} x (0;f) x IRdfor alii > Oand x € IRd,y € JRd. Here we used the
results of [2, Lemma 5], where it is proved that

fd ; (i-t//0 T7/a dz
X
Jo  Ji ((t- x)Va+ X—XNHKHK (rl/a + y—z|)d+a+i
<c B1rZxA+1 ), 1 (13)
@ al (t2/ao + ty —XNHGH
1 '

+BJ]1+e , =1\ .
T @J (tl/a + - XNdHx+H

for— &< k< B, —&< | < 7 and C > 0,which depends only on d, oz kand |I.
Therefore, we obtain the following equality

B T dx T gt - xx)V(xzy\a@\dz = T dx I;2 BE(t - x,x,2)V(x,2,y)\a(z)\dz,
Jo  JRd 0 JRd I

using the Fubini theorem.

const
The inequalities (12), (13) and |B*g(ixy)] < 1.— p— d allow us to assert that
n \% +HlY-x\
the integral 10 dXJRd Bxg(t —x, X,V (1,z,¥Y\a2\.dz exists. Now we have to pass to the limit
with € —0+ in the equality (14) to complete the proof of Lemma. |

We have thus got that the function G(f, X, y) is the perturbation of the transition probability
density g(t, X,y) of a symmetric stable process.

Considering estimates (12), (11) and inequality (13), we can write for t € (0; T], X € Rd,
y € Rd

N\G(txyY)\ < N (Ma+ X

fi f t—X 1
+ NGr]jJa]] 3N dx* _ Ty/U+ p_ xPrita (tl/a + y—z|)}d+al "2

< Kt 1+HI* A

y K t U +,
(o + Jy—x|)d+=171 iVo+ y—x]J "

where K is a positive constant, which depends on T, a; ¢, JH| and d. Note that the right hand
side of the last inequality can be estimated from above by the following expression

WAy Sgyare < KT

where K = (2I'Va + 1)K.

2 The fundamental solution of the Cauchy problem

It is known (see [2]) that the function g(t,Xx,y) is the fundamental solution of the Cauchy
problem (3) and, in addition, the function

n(*'x) = /Rd<Ky)*("y)<*y + 1dx\] g(t-x,x,y)f(x,y)dy
is the solution of the Cauchy problem
= Axu(t,x) +f(t,x), t>0, X €Rd, n
w(0+,x) = @o(X), X€RAC,

for any bounded continuous functions (@(x))x€Rd and (f(t,x))t>QxeRd. Moreover, this solu-
tion is unique in the class of functions that vanish as p4 —» oo.
Thus, the function

U(t,x) = j|;{d<|0(y)<3(t,><,y)dy

= Ld dy+Jodrl-8 ~rx,y) Il (TY2)M2) drsi)\dy



problem (15) with f(t,x) = J/ V(t,x,2)g>(2) d\a(x)\.
Rd
Now we note that V (f,x,y) = (BxG(t, X,y),e(x)). Then

f{t,x)= J'Ld(BxG(t,x,z),a(x))<p(z)dz = (a(x),BxU(t,x)),

and the function Li(t, X) is a solution of the Cauchy problem for the equation (4) with bounded
continuous function a(x) and operators A and B defined by equalities (1) and (5) respectively.
Let us prove that the function G(t, x,y) satisfies the equation of Kolmogorov-Chapman

G(E +s,x,y) = Jde(S’X’Z)G(t’Z’y) dz (16)

foralls> 0,t> 0,x € y € Rd. Note, the function g(t, X, y) satisfies the equation (16).

Let {<p{X))xeRa be a continuous bounded function. Put ii(s, X, ) = J/IR\G(S’X’y)<p(y) dy,

u(s,x,cp) = JfR OI@J(s,x,y)(p(y)dy and. W(s,x,<p) = IR V(s x,y)cp(y) dy.
Note, that the function W(t, X, @) is the unique solution of the following equation

W(fix, 0) = Wo(ix, @) + [ dr [ VO(t - tx,2)W (1,2, 9N\a@\dz, an
[0] Rif

where Wo(s,X.,9) = J/ Vo(s,x,y)<p{y)dy.
Rd
Then the function U(s, X, ¢®) can be given by the equality (see (5))

U(t,x,w) = u(t,x,(p) + f at_j gt —T1,x,2)W (t,z,9\a(Q\dz.
Jo JRrd

Now, let us find the function U(t +s, X, ¢). We have

”

U(t +s,X @) =u(t +s,x, @) + Jl er'gd gt +s—T,x.2)w (t,z, ®\(Q\dz
o
= J dg(s>x,y)u{t.y,(p)dy
+ jL ag{s X V)dng aTJLdz(t - T,Y,2W(T,z,<p)\a(z)\dz

+J/t dTJRdg(t+s—r,x,z)W(t,z, ©)\o()) Nz

:/, 1Ny Ut1! d
J.Rdg(sxy) (t,y,<p)dy

+ dr __ g(s - T.X,z2)W(t + 1,0, O\
Jo JRd

Therefore, the function Wt(s, x,¢) = W(t + s, X, ¢) satisfies the equation (17), where the func-

tion @ is replaced by U(t, -, ). Then W(t +s,X, ) = W(s, x, U(t, -, )) and we arrive at the

equality U(t +s,Xx, @) = U(s,x,U(t, -, @)) or, what is the same,

j/Rdc;(t+s,x,y)<|o(y)dy= G(s.,x,z) JRdG(t,z,y)(p(y) dy dz

/
JRd
/ dy / G(s,X,z)G(t,z,y) dz.
. (p{y)yJRd( )G(t,z,y)

jRd

Then the relation (16) is proved because the function ¢ is an arbitrary bounded continuous
one.
Next, we get / dG(t, X, y)dy = 1from (8) and (9), because there are obvious equalities
iR

fRg(t’x'y)dy = 1 and J*"V O(t,x,y)dy = (bxJ*g(t,x,y) dy,e(x)* =0

foralH > 0, x € R f and the uniqueness of the solution of equation (9) leads us to the identity
jrV (t,x,y)dy = 0.

Unfortunately, we can not guarantee non-negativity of the function G(t,x,y) and the exis-
tence of a Markov process with the generating operator A + (a(-), B).
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Ocunuyk M.M. IMpo aesike 36ypeHHs CTILAKOro MpoLiecy Ta po3B'A3Ku 3aaadi KoL /11 ogHoro Kriacy noegap—
AvepeHuiabHUX piBHAHBL. // KapnaTcbki MaTem. ny6n. — 2015, — T.7, Nel. — C. 101-107.

3 [Jornomoroi MeTody Teopil 36ypeHb 3HalAAeHO hyHAAMEeHTaSIbHUEA PO3B'A30K OEeAKOro Kria-
cy nceBAo-AndepeHLia/IbHNX PiBHAHbL. PO3rIAHYTO CUMETPUYHUIA a-CTILAMIA Npouiec B 6araToBu-
MipHOMY eBKNifgoBoMy MmpocTopi. Moro reHepatop A € mceBao-AudepeHLjiasisHUM 0repaTopoM
umiA cMMBO 334a€TbeA pyHKUiero —€|/l|a, ge a € (1,2) i ¢ > 0 3agaHi cTasli. BeKTopHO3HaYHWIA
onepatop B mae cumon 2/cj/lJa-2A. TobyaoBaHO (yHAAMEHTa/IbHUIA PO3B'A30K PIBHAHHA ut =
(A + (a(+), B))M 3 HenepepBHOKO 06MEXEHOID BEKTOPHO3HAUHOK (hYHKLIEN a.

KrtouoBi c/10Ba i hpasu: cTitAakmiA npouec, 3aaada Kowwi, nceBao-andepeHLuiasibHe piBHAHHS, LWislb-
HiCTb AMOBIPHOCTI nepexoay.
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In the paper the homomorphisms of algebras of entire functions on Banach spaces to acommu-
tative Banach algebra are studied. In particular, it is proposed a method of constructing of homo-
morphisms vanishing on homogeneous polynomials of degree less or equal than a fixed number
n.
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1 Introduction and preliminaries

In 1951 R. Arens [1] found a way of extending the product of Banach algebra A to its bidual
A" in such a way that this bidual became itself a Banach algebra. There are two canonical ways
to extend the product from A to A" which called the Arens products. We recall definitions [2].

Let A be a commutative Banach algebra, X be a Banach space over the field of complex
numbers C.

If x € X and N1 € X' then we write (J1,X) = A(x). Foreverya,b € A,A € A'and ® € A"
define a.x € ALAa € A", 1.d € A" and ®.J71 € Al by:

a.A b h» (A ba),\.a :bb* (\ab),
NnNo b (0,b.J1),0.71 :b (¢,N1.b);

and then define two products CJand O on A" by:
(e0Y,A) = (©,Y.A),(POY,A) = (Y, A.D)(D,Y € A").

Then (A",) and (A", 0) are Banach algebras. We say that Ais Arens regular if for all
®,Y € A" we have dMNY = ®0Y.

For a given complex Banach space X, V (nX) denotes the Banach space of all continuous n-
homogeneous complex-valued polynomials on X. The problem of extending every element of
V (nX) to a continuous n-homogeneous polynomial P on the bidual X" of X was first studied
by Aron and Berner in 1978, who showed that such extensions always exist.

LetB : Xx...x X =) Cbe the symmetric n-linear mapping associated to P. B can be
extended to an un-linear mapping B : X" x ... x X" —C. Let (2\,... ,zn) € X" x... x X".

For a net (otk) from X which converges to zk in the weak-star topology of X" for each fixed
k, 1~ k™ n, we put
B(zi,...,z,,) = 4T ...3iTB(X/N,...,X a,).
al on

Then the Aron-Berner extension P on X" to X is defined as
P(z) = B(z,...,2),

where B is aunique continuous n-linear symmetric form for which P(x) = B(X,..., X) for each
X € X.

Consider the complete projective tensor product A® nt X. Every element of A ®n X can be
represented by the form a = £ kak<SnX&cwhere ak € A, Xk € X, Foreverya € A®n X and
/ € Hb(X) (algebra of entire analytic functions of bounded type on a Banach space X) let us
define f(a) in the means of functional calculus for analytic functions on a Banach spaces ([5]).
Then/ is the Aron-Berner extension of /.

In [6] using the Aron-Berner extension and approach developed in [4] it was obtained a
method to construct nontrivial complex homomorphisms of Hb(X) vanishing on homoge-
neous polynomials of degree less or equal that a fixed number n. In this paper we extend
this result for Banach algebra valued homomorphism.

2 Main results

Recall that X is a left A-module (X is a left module over A), if exists abilinear map A x X — X,
(a,x) i—*a-xsuchthat @\ m2) m = a\m@a2 - x), where fli,a2 € A, X € X. Itis easy to prove that
A 87 X is a left A-module. So, using Theorem 2 ([3], p.297) we can easy obtain the following
proposition.

Proposition 1. (A ®%X)" is aleft A'l-module.

In [7] it is proved a theorem about a homomorphism of algebras Hb(X) and
Hb((A®n X"), A) in the case when A is some finite dimensional algebra with identity. The
following theorem extends this result for the case of an infinite dimensional algebra A.

Proposition 2. Let A be the Arens regular Banach algebra. For everyf € Hb(X) there exists a

functionf € Hb((A <ff X)", A") such thatf(e ® x) = ef(x), x € X and themappingF :f n /
isahomomorphism between algebras Hb(X) and Hb((A @n X)", A").

The proof it easy follows from the fact that both the Aron-Berner extension and functional
calculus are topological homomorphisms ([4], [5D.

Example 1. Let us show thatin the caseif A is not Arens regular- then the map F is not neces-
sary ahomomorphism. Let A = i\ X = C2. Weneed toprof that

F:Hb{C2) » Hb(\N®nC2)",0 thearef,g € Hb(C2) such thatF(fg) ¢ F(f)F(g).

For each t — (t\t2) € C2put f(t) — h,g(t) = t2 and apply the extension operator
C29t x € t\x t\and the Aron-Berner extension £] x t\ 3 X u= (U\U2) € ico x "o
Then

7(x) = *Le I\ gfx) = X2Et\  f(x)g(x) = Xl * X2,
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where " * " is the convolution product in i\ Suppose that
J(u) = ui €1", fm)=uz€

Then we have f (u)g(u) = UNDW2 and # («)/(«) —«1P«2 = «i[H«2:

Since UNOW2 ¢ UiDu2in the general case so, we can conclude that F is not a homomor-
phism.

On the other hand, fg(t) = t\m2 = P(t) — homogeneous polynomial of second degree
vector variable t. It is known that P(t) = B(t, t) is bilinear form which is uniquely determined
by the polarization formula:

2
*L*F X2+ *2 * Xi
2

Then
B(x,x) =

and we have ] ]
uUiou2 + Uiou2 L20OU1 + 11201,

2

B(u)
So, B(u, u) = P(u) =Jg(t) ¢ f(t)g(1).

Next, we consider the case when A is a reflexive Banach algebra. Let us denote by V (nX)
the Banach space of all continuous «-homogeneous complex-valued polynomials on X.
Vf(nX) denotes the subspace of «-homogeneous polynomials of finite type, that is, the sub-
space generated by finite sum of finite products of linear continuous functionals. The closure
of Vf(nX) in the topology of uniform convergence on bounded sets is called the space of ap-
proximable polynomials and denoted by Vc(nX).

Let us denote by A,,(X) the closure of the algebra, generated by polynomials from V (*nX)
with respect to the uniform topology on bounded subsets of X. It is clear that
AX(X)nV (nX) = Vc(nX).

Let us denote by C{Hb(X), A) the space of all continuous un-linear operators on Hb(X) to A
and let M g (Hb(X)) be the set of all homomorphisms on Hb(X) to A.

In [4] introduced a concept of radius function K(@) of a given linear functional ¢ € Hb(X)"
as the infimum of all numbers r > 0 such that ¢ is bounded with respect to the norm of
uniform convergence on the ball rB and proved that

R(cp) = lim sup HALT,
n—00
where @nis the restriction of @ to V{nX). In [7] extended this definition to a homomorphism
® € Ma(Hb(X)), that is, K(®) is the infimum of all numbers r > 0 such that ® is bounded
with respect to the norm of uniform convergence on the ball rB and proved that

K(®) = limsup [|Mlim, @)
n—00

where @,, is the restriction of ® to space «-homogeneous polynomials.

Theorem 1. Suppose that ®,, € £{V (nX), A) forn € Z+, and suppose that the norms of ®,,
on V (nX) satisfy

@l < csn
forc,s > 0. Then there is a unique ® € C(Hb(X), A) whose restriction to V (nX) coincides
with ®nforeveryn € Z+.

Proof. For any character ©€ M (A), |l = 1we construct operator @,, : V{nX) -> A. Then 60
®,, € (V(nX))' and []0cd,]l < [ID.]I Since ||®]] < csn, then every Osatisfies the inequality
0o ®,, d < csn. From [4, Proposition 2.4] it follows that for every ©there exists linear functional
@ : Hb(X) -4 C,f) G Hb(X)', such that gn = 60 ®n. Therefore, we have operator T : A" —>
Hb[X)', 0 &= ¢ and T* is the adjoint operator to T:

[ :Hb(X)" = A" = A.

Let us consider the restriction of T on Hb(X) C Hb(X)" and denoted it by ®. Clearly
® : Hb(X) — A is a required operator.

In order to prove that the restriction ® to V (nX) coincides with @,, it is enough to show that
énP) = @ (P) for every P € V(nX). Put ®,P) = «! B(1) = O\ € C, that is
©od,)(P) = on(P) = C\ On the other hand, ®(P) = «2/thatis (Bo®)(P) = ¢(P) = c2
Since q,, is restriction of @, @(P) = c2 = Yn{P) = cIr == O\ = ¢c2 = c. So, the equality
(Bo®)(P) = Bo®,,)(P) = cfor every Oimplies that ®,,(P) = ®(P). O

In the work [6] it was formulated and proved the Lemma 1 on extension of the linear func-
tional @ € Hb(X)fto character € M b. The following theorem is a generalization of the known
lemma and is related to the study of extension of linear operator to the homomorphism.

Theorem 2. Let® € C(Hb(A X), A) be a linear operator such that ® (P) = 0 for every
P € V(mAO07TrX),A) NAmM. (A X), where m is a fixed positive integer and ® T be the
nonzero restriction of ® to V(m(A 07IX)).

Then there is a homomorphism Y € MA(HbB(A 0 m X)) such that its restrictions YA to
V (k(A(8>TrX)) satisfy the conditions: Yk = Oforallk < mandY,, = ®,,. Moreover, the radius
functions of Y is calculated by the formula

o iu < R(Y) < e]|oT [/,

Proof For every polynomial P € V{mk{A ®n X)) we denote by P(r} the polynomial from
'P(*®TIN{A ®n X)) such that P*(a®m) = P(a).
Since dwi ¢ O, there is an elementw € (A ®FFX)",w ¢ O such that for any «/-homogene-
ous polynomial P,
®P) =dTP) = P(LIM, IMI = [loT]i/
where P(m) is the Aron-Berner extension of linear functional P from <M (A ®n X) to
®n X)"wor an arbitrary «<—-homogeneous polynomial Q € V(n(A ®m X)) we set

Y(Q) =/ ithn = mk for some k- °'(2)

I O otherwise,

where Q(,,,) is the Aron-Berner extension of the *~homogeneouspolynomial Q (W) from
A" (A ®n X) to ®Mt(A ®n  X)".

Let (ua) be a net from @ (A ®n X) which converges to w in the weak-star topology of
®”Wr(A®n X)", where a belongs to an index set 21. We can assume that every uKhas a repre-
sentation ua= yw @EA> ®n XjA)®m= E/eN pfa forsome aA € A, XA € X.

Now we will show that Y (PQ) = Y(P)Y (Q) for any homogeneous polynomials P and Q.

1) Let us suppose first that deg(PQ) = mr + / for some integersr > Oand m > | > 0. Then

P or Q has degree equal to mk +s, k > 0, m > s > 0. Thus, by the definition Y(PQ) = Oand
Y(P)Y(Q) = 0.



2) Suppose now that for some integerr > 0deg(PQ) = mr. IfdegP = mkand degQ = mn
for k,n> 0, then deg(PQ) = m(k +n) and

Y(PQ) = (PQ)WH = P{m)(w)Q{m)(w) = Y(P)Y(Q).
3)Letat lastdegP = mk +1 and deg Q = mn-\-r,l,r>0,1 +r = m. Write

1 1
(degP +degQ)! “ (m(k +n+ 1))

Denote by Fpqg the symmetric multilinear map, associated with PQ. Then
t PQ («1/ - m' "m(k+n-+I)J

=V T, Fp (an(2)' m-/ac{nkH)) | {a<r(mkH-H)>--->aa(mk-+n+1))) *

PEMT(KHTH)
where 6 mffct,H) is the group of permutations on {Il,... m(k + n + 1)} Thus, for
®i, - - =ak+n+H € 2L we have
ip(PQ) = (PQ)(‘{'n)H = KI/__l_i'l‘:\I;+n+l Fpag (uei,..., M«+H,+)
= ., h . U \/Ey'eN € s I;E€NC -
=v Y] im
e TR 0D
oz (arAer(l) """ ala(aa(y/Io(kt1) aa(ic+L))
jI'—jk+nHelN

X (ajakHyaa(kH)ajoktYa(rk+d)" ' * e a(Hi+)) *
Fix some ¢ € 6 n(fct,+i) and fix all aja()Aff{i) for i < kand fori > k+ 1. Then

"alc(k)'n<r(k) aj(r(k+1)aafk+\))

>
VojkcHebi Akal>

X AQ (MQcHIJArfit+l) " dla{k+2)acr(n+2) ' " ' Al<r(k+n+1)'n<r(k+n+\))

because for a fixed * of)Adi>r< K

PNy) = > Fp("O(DAT(l)' mmmiNa(K)AXAK)'Y )

Y= ANAH2—-AcbrHEN

is an /-homogeneous polynomial and for fixed aki()2ad{i), i > k+ I,

Qcr(y) - tA/fer(t+2)'a<r(n+2)/ t 0 ANR(K+n+1)'a<?(i+n+l))

h>—=ki2>Hk+n+I"
is an r-homogeneous polynomial. Thus, PaQa € A m-\(A®m X). Hence,
ligg (PiQiN(m(ua) = Y(P<-Qt) = 0

for every fixed o. Therefore, Y(PQ) = 0. On the other hand, Y(P)Y(Q) = 0 by the definition
ofYSo,Y(PQ) = Y(P)Y(Q).

Thus, we have defined the multiplicative operator Y on homogeneous polynomials. We can
extend it by linearity and distributivity to a homomorphism on the algebra of all continuous
polynomials V(A ®n X).

If Y,, is the restriction of Y to V(n(A ®m X)), then |[Y]] = if n/m is a positive
integer and HY nll =0 otherwise. Hence, the series

oY
is a continuous homomorphism on Hj,(A ®n X) by Theorem 1 and the radius function of Y
can be computed by R(Y) = Ii%p knl | > IimAigp Inir/m* = JIi/Av = |]or J*'w-On
n—

the other hand, |IV.]l = supPIEL |Y<«(P)|] = supPIFl |P(m(w)]. Since

IM(mM)HT < \XM/mMNINN\< ¢ (N rA0)\NWN\N\N/m N\
we have
I H <c@, A® N XNNNN/M < WANY/mM = A ST M /w-
SoR(Y) < e]|oT JI/m. The theorem is proved. O
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Mputamak .M. F'omomopismu i hyHKLioHasIbHE YMC/IEHHS BasTrebpax Liix qiyHKLEA Ha 6aHaxoBMX Mpo-
cTopax // Kapnatcbki MaTem. ny6n. — 2015. — T.7, Nel. — C. 108-113.

JocnigxeHo romomopdiamum anrebpu Lisinx yHKLitA 06MeXXeHOro TUy Ha 6aHaxoBUX MPOCTO-
pax B KOMyTaTuUBHY 6aHaxoBy asirebpy. 30Kpema, 3arporioHOBaHO MeToZ, NodyaoBu roMomopdi-

3MiB, SIKi € Hy/1eM Ha 04HOPIAHMX MOJTIHOMaxX CTEMeHs, L0 He NnepeBuLLye aAesike ikcoBaHe Yncso
n.

Krouosi croga i pasn:  MpoaosXxXeHHA ApoHa-bepHepa, PYHKLUiOHa/IbHE YMC/IEHHS, anre6pn
aHaN I TUYHUX YHKLA B 6aHaX0BMX NpocTopax.



Carpathian Math. Publ. 2015, 7 (1), 114-119 KapnaTtcbki maTem. ny6n. 2015, T.7, Nel, C.114-119

doi:10.15330/cmp.7.1.114-119

TROSHKI V.B.

A NEW CRITERION OF TESTING HYPOTHESIS ABOUT THE COVARIANCE
FUNCTION OF THE HOMOGENEOUS AND ISOTROPIC RANDOM FIELD

In this paper we consider a continuous in mean square homogeneous and isotropic Gaussian
random field. A criterion for testing hypotheses about the covariance function of such field using
estimates for its norm in the space Lp(T), p > 1, is constructed.

Key words and phrases: criterion for testing hypotheses, spherical correlogram, isotropic field.
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Introduction

Since the majority of the papers is devoted to the evaluation of covariance function with
given accuracy in the uniform metric that is why in this paper we set the task to estimate
the covariance function B(t) of a Gaussian homogeneous isotropic random field with given
accuracy and reliability in Lp(T),p > 1 We construct a criterion for testing the hypothesis
that the covariance function of homogeneous and isotropic Gaussian random field §(x) equals
B(t). We shall use spherical correlogram

6(T) = UAR) JVRO)

as the estimator of the function B(r).

Definition of the square Gaussian random vector was introduced by Yu. Kozachenko and
O. Moklyachuk in the paper [9]. They also received estimates for distributions of square Gaus-
sian random vectors. Applications of the theory of square Gaussian random variables and
stochastic processes in mathematical statistics were considered in the paper [8] and in the
book [3]. A lot of the papers so far have been dedicated to estimation of covariance function of
Gaussian random process and field, in particular the books [5], [1] and [15]. The main prop-
erties of the correlograms of the stationary Gaussian stochastic processes were studied by V.
Buldygin and Yu. Kozachenko in the book [3]. Exponential inequalities for the distribution of
the deviations correlograms from respective covariance function in the uniform metric were
considered in the papers [8], [10] and [11]. Asymptotic normality of correlograms in the space
of continuous functions were given by V. Buldygin and V. Zayats in the paper [4]. Issues of
asymptotic normality of correlograms in the certain functional spaces were discussed in the
papers by O. Ivanov [6]and V. Buldygin [2]. Leonenko and O. Ivanov in the book [7] consid-
ered asymptotic properties for estimates of covariance functions. In the papers [14] and [13]

Yu. Kozachenko and T. Fedoryanich constructed a criterion for testing hypotheses about the
covariance function of a Gaussian stationary process. A criterion for testing hypotheses about
the covariance function of a stationary Gaussian stochastic process with given accuracy and
reliability in Lp(T), p > 1is constructed in the paper [12].

1 Required information

Definitioni ([3]). Let T be aparametric setand let= = {£f : t € T} be a family of Gaussian
random variables such that EEf = 0. The space SG3(Q) is called a space of square Gaussian
random variables ifany { € SGs(Q) can be represented as

(= E1AE-EETAL,

where ¢ = (E\,..., £anNT with &€ =, k= 1,..,n, and A is an arbitrary matrix with real-valued
entries, OI'1iZ € SGs(n) has the representation

(= Jig, QAL - EZVALY.
Theorem 1 ([12]). Let {T,2,p}be a measurable space, where T is a parametric set and let

X — {X(1t),t ¢ T} be a square Gaussian stochastic process. Suppose that X is a measurable
process. Further, let the Lebesgue integral f (EX2(t))%dp(t) be well defined for p > 1. Then

T
the integral f (X(t))pdfi(t) exists with probability 1and
T
P J IX(t) Rap(n >¢€1l < 2\ 1+ exp < )
Cp y/2C"
forall e > + \Z(f + 1)/ CpwhereCp= J (EX2(1))"d}i(t).

Definition 2 ([15]). Random field & — {£(*), i € R"} is called homogeneous in the wide sense
in R" TI'EE(X) = const,x € R” and

E£E(X)E(Y) = B(x —y) = f el x>~dF(\),x,y e R".
R1
Definition 3 ([15]). Let SO(n) be a group of rotations !R" around the origin. Homogeneous
random field &(x) is called isotropicif EE(X)&(y) —E&(8x)&") forallg e SO(n).

We denote by Sr (x) and Vr(x) sphere and ball of radius R centered at a point x respectively.

Let be a Lebesgue measure on Sr(x). By Un(R) and cmn(R) we denote the volume of
ball and the surface area of the sphere of radius R in R" respectively.
Consider a random field

= ) Ysre™ Y ) MNdY).
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Theorem 2 ([15]). Random field w,(x) is homogeneous and isotropic. Homogeneous and
isotropic random fields 2/r(x) and {(x) are related each other and the following equalities
hold

EnNkKA(X,)NK2(X2) = JQ YN N2 1)YnNe 2)Y,,(ATXXR)<1d(A), (4]
ro
Enki(XDUXx2) = / YNN2)Y,,(ATXDRQ)4P(N), (©)]
JO
where
h-2(z)
Yn(z) = 2ri~ (1) T < JSaspherical Bessel function, ®(A) = J F(dv), K(-)

——=\-Vn<\
is a finite measure on ¢ -algebra B,, Borel sets ofR".

XN = X\—x2\ss a distance between the points X\and x2.

2 Construction criterion for testing hypothesis about the covariance
FUNCTION OF THE HOMOGENEOUS AND ISOTROPIC RANDOM FIELD

Let {(X) be a continuous in mean square homogeneous and isotropic Gaussian random
field in R" with zero-mean. Without any loss of generality, we can assume that the sample
paths of the field {(X) are continuous with probability one on any bounded and closed set.

Let the random field §(x) be observed on the ball Vr+t(0), r > 0, and let the spectral
function of the field ®(A) be absolutely continuous.

Theorem 3. Let a spherical correlogram

B(t) = — 72— 1 (—Vti ldx= ~ . 1 ix (4
M = TalR) avRo Y \antt) 159 bw 7' %= Un(ry avR) HRONTO0AX ()
be an estimator of the covariance function B(t). Then the following inequality holds for all
f +1)p) Cp:
1
2.
T) —B(X))pdT > € 1St / exp o
"\ cp V2c;
where
CP= 7. 7k>5<J|:) Jrovro FAAT)Y (Al x-y ] )<(®(A)

+ j Y, 01y, (]x - yhro (1) N dxdydx

and 0 < A < oo.

Remark 1. Since the sample paths of the field {(x) are continuous with probability one on the
ball Vr+t(0), B(t) is aRiemann integral.

Proof. Consider
E(B(T) - B(1))2= E(B(T))2- B2(7).

From the lIsserlis equality for jointly Gaussian random variables and relationships (2) and (3)
it follows that

szmkmL

+ EE(E(Y)E>7T(*)>7r(y) + EL00NT(M)E.EM)NT(X)) dxdy

Un(_R) J/VR(O) J\l/R(o) /0 YN(AT)YN(0)a®(A)

roo

+ BO\x=y\) J/O Y'(AT)Y ,(Alx-y ) P (A)

AD [ N\
+ if Y, (AT)Y..(Alx-yDrio(A)yo Y., (ATY.,(]|x - yPD*®(A)j dxdy

=® X,0,X,0) (B2(7) + B(Jt-yh T ~ATII,(AK -YIMDP(A)
0

+ J/ Y (AT, (AlXx —y)ind(A) dxdy = B2(r)
[0}

T Koy fore B YN Ly Amam)yn@ax —yDiie(a)
+ YL (AT)Y,,(Alx —yDrio(T1) \dxdy.

Therefore,

Er" 1>-B(t»2=w Kk L , /,R(, i8"1->0)T Tr2AT)Y"(Ai--" ¢ A>
noo

+ //0 Y (AT)Y,(Alx —y|)*"®(A)  dxdy. (5)

Since B(t) —B(1) is a square Gaussian random field (see Lemma 3.1, Chapter 6 in book
[3]), then it follows from the Theorem 1 that

rA
P <] (B(T) —B(T)pAT > £>< 2 14+ o *
0 \ cP V2CL.

Applying equality (5) we get

= c symi  (B(Jity)r

+ / YuADY,(Alx —yDrAdA) J dxdydr.
io



Denote |
£P
S(e) =2 l'F exp <

N\ Cp V2C'

From the Theorem 3 it follows thatii € > zp—Cp + ~/(f +1)p) , then

Pi J (B(T) - B(D)pdT > & < £(¢)-

Let e” be a solution of the equation g(e) —9,0< & < 1 Put = max-fe”"z"}. It is obviously
that g(Ss) < d and

P<J (B(T) - B(T)pdT>S$ <& 6)

Let H be the hypothesis that the covariance function of homogeneous and isotropic con-
tinuous in mean square Gaussian random field {(x) equals B(t) for 0 < T < A. From the
Theorem 3 and (6) it follows that to test the hypothesis H one can use the following criterion.

Criterion 1 For a given level of confidence o the hypothesis H is accepted if

Vil
J (%) - B(T)Yau(t) < Ss

otherwise hypothesis is rejected.

Remark 2. The equation g(£) = 0 has a solution for any & > 0, since g(e) is a monotonically
decreasing function. We can find the solution of equation using numerical methods.

Remark 3. One can easily see that Criterion 1 can be used if Cp —» 0as R — co.

3 Conclusions

In this paper, we constructed a new criterion for testing hypothesis about the covariance
function of homogeneous and isotropic Gaussian random field. The evaluation is carried out
by observing for the random field on the ball. We regard spherical correlogram as the estimator
of the covariance function.
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Let Rbe aring and G be a group. An R-module A is said to be minimax if A includes a noetherian
submodule B such that A/B is artinian. It is studied a Z p~G-module A such that 1/Ca(H) is
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Introduction

The modules over group rings RG are classical objects of study with well established links
to various areas of algebra. The case when G is a finite group has been studying in sufficient
details for a long time. For the case when G is an infinite group, the situation is different. The
investigation of modules over polycyclic-by-finite groups was initiated in the classical works
of P. Hall [3,4]. Nowadays, the theory of modules over polycyclic-by-finite groups is highly
developed and rich on interesting results. This was largely due to the fact that a group ring
RG of a polycyclic-by-finite group G over a noetherian ring R is also noetherian. This allowed
developing an advanced theory of such rings and obtain deep results about their structure.
For group rings over some other groups (even over well-studied groups, as for instance, the
Chernikov groups) the situation is not so good since these rings have quite a sophisticated
structure. In particular, they are neither Noetherian nor Artinian. In such cases, it is not always
possible to conduct the study of modules based only on the ring properties. So naturally
there is a need for other approaches. Application of the finiteness conditions, particularly
the use of the minimal and maximal conditions, proved to be very effective in the classical
theory of rings and modules. Noetherian and artinian modules over group rings are also very
well investigated. Many aspects of the theory of artinian modules over group rings are well
reflected in the book [9]. Lately the so-called finitary approach is under intensive development.
This is mainly due to the progress which its applications have found in the theory of infinite
dimensional linear groups.

Let R be aring, G agroup and A an RG-module. For a subgroup H of G we consider the
R- submodule Ca(H). Then H acts on A/Ca(H). The R-factor-module A/Ca(H) is called
the cocentralizer of H in A. The factor-group H/Ch (A/Ca(H)) is isomorphic to a subgroup
of automorphisms group of an R-module A/Ca(H). If x is an element of CH(A/Ca(H)),
then x acts trivially on factors of the series (0) < Ca(H) < A. It follows that Ch (A/Ca(H))

is abelian. This shows that the structure of H to a greater extent is defined by the structure
of Ch {A/Ca{H)), and hence by the structure of the automorphisms group of the R-module
A/Ca(H).

Let 9 be a class of R-modules. We say that A is an LL —finitary module over RG if A/Ca(Xx) €
LU for each element x € G. If R is a field, Cg(A) = (1), and LLl is the class of all finite dimen-
sional vector spaces over R, then we come to the finitary linear groups. The theory of finitary
linear groups is quite well developed (see, for example, the survey [11]). B.A.F. Wehrfritz be-
gan considering the cases when LU is the class of finite R-modules [13,15,16,18], when LU is
the class of noetherian R-modules [14], when UT is the class of artinian R- modules [16-20].
The artinian-finitary modules have been considered also in the paper [10]. The artinian and
noetherian modules can be united into the following type of modules. An R-module A is
said to be minimax if A has a finite series of submodules, whose factors are either noetherian
or artinian. It is not hard to show that if R is an integral domain, then every minimax R-
module A includes a noetherian submodule B such that A/B is artinian. The first natural case
here is the case when R = Z is the ring of all integers. B.A.F. Wehrfritz has began the study
of noetherian-finitary and artinian-finitary modules with separate consideration of this case.
This case is of particular importance in applications, for instance, it is very important in the
theory of generalized soluble groups.

Let G be a group, A an RG-module, and VWl a class of R-modules. Put

&m(G) = {H 14 is a subgroup of G such that A/Ca(H) € LI}

If A is an LLi-finitary module, then Cgjj(G) contains every cyclic subgroup (moreover, every
finitely generated subgroup whenever LU satisfies some natural restrictions). It is clear that the
structure of G depends significantly on which important subfamilies of the family A(G) of all
proper subgroups of G include Cjrrt(G). Therefore it is interesting to consider the cases when
the family C$fi(G) is large. In almost all groups (with exception of noetherian groups), the
family of subgroups which is not finitely generated is much larger than the family of finitely
generated subgroups. It is therefore interesting to consider the case, which is dual to the case
of an 9H-finitary module.

LetR be aring, G be agroup and A be an RG-module. We say that A is minimax-antifinitary
RG-module if the factor-module A/Ca(H) is minimax as an R-module for each not finitely
generated proper subgroup H and the R-module A/Ca(G) is not minimax.

This current work is devoted to the study of the minimax-antifinitary G-modules. Here
Zp» denotes a ring of p-adic number. The ring Z p~ play a very specific role in the theory of
modules over group rings. It is principal ideal domain and, in the other hand, it is a valuation
ring. The study breaks down naturally into the following cases. Put

CoCzpo-mx(G) = (X TA/Cpa(X) isaminimax Z p® —module}.

The first case is the case when G = Cocz @-mx(G)- this case, every proper subgroup of
G has a minimax cocentralizer. This case was considered separately in another paper. The
second case is the case when G ¢ Cocz ,,_ mmx(G) and the group G is not finitely generated.
The third case is the case when G ¢ Coc” to-mmx(G) and the group G is finitely generated.
The current article is dedicated to the second case. Here we consider the modules over groups,
which belong to the following very large class of groups.
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A group G is called generalized radical, if G has an ascending series whose factors are lo-
cally nilpotent or locally finite. Hence a generalized radical group G either has an ascendant
locally nilpotent subgroup or an ascendant locally finite subgroup. In the first case, the locally
nilpotent radical Lnr(G) of G is non-identity. In the second case, it is not hard to see that G
includes a non-identity normal locally finite subgroup. Clearly in every group G the subgroup
Lfr(G) generated by all normal locally finite subgroups is the largest normal locally finite sub-
group (the locallyfinite radical). Thus every generalized radical group has an ascending series
of normal subgroups with locally nilpotent or locally finite factors. A group G is called locally
generalized radical group, if every finitely generated subgroup is generalized radical. The class
of locally radical group is very large, in particular, it includes all locally finite groups and all
locally soluble groups.

The main result is a following.

Theorem 1. Let G be a locally generalized radical group, A a minimax-antifinitary Z p<G-
module, and D = Coc%g®D mx{G). Suppose that G is not finitely generated, G ® D and
Cg(A) = (1). Then G is agroup of one of the following types.

1 G is aquasicyclic g-group for some prime q.

2. G = Q x (g) where Q is a quasicyclic p-subgroup, g is a d-elementand gd € D, p, d are
prime (not necessary different).

3. G includes anormal divisible Chernikov p-subgroup Q, such that G = Q(g) where g is
a d-element, p, d are prime (not necessary different). Moreover, G satisfies the following
conditions:

(@) gd € D;
(b) Q is G-quasifinite;
(c) ifp = d, then Q has special rank dm~l (d —1) where dm= Xg)/ C(g\Q) |

(d) if p @ d, then Q has special rank o(p, dm) where again dm = ](g)/C~(Q)] and
o(p, dm) is the order ofp modulo dm

Furthermore, for the types 2, 3 A(cvZp°oD) is a Chernikov p-subgroup.

Here ojRG be the augmentation ideal of the group ring RG, the two-sided ideal of RG gen-
erated by all elementsg —1,g € G.

Recall also that an abelian normal subgroup A of a group G is called G-quasifinite if every
proper G-invariant subgroup of A is finite. Clearly that in this case either A is a union of
its finite G-invariant subgroups or A includes a finite G-invariant subgroup B such that the
factor A/B is a G-chief. At the end of the article, we provide the examples showing that all the
situations that arise in the theorem can be realized.

1 Some preliminary results

Let R be a ring and 9/1a class of R-modules. Then 9/1is said to be aformation if it satisfies
the following conditions:
Fl. if A € 91and B is an R-submodule of A, then A/B € LI

F2. if A is an R-module and Bu,.,.,.B® are R-submodules of A such that A/Bj € #4,
1<j<kthenA/(BLN..MB%) e 91

Lemma 1. LetR be aring, LUl aformation of R-modules, G agroup and A an RG-module.
() IfL, H are subgroups ofG such thatL < H and A/Cag(H) € 94, then A/Ca(L) € TI.
(ii) IfL, H are subgroups of G whose cocentralizers belong to Tt, then A/Cg((H, L)) € 9.

Proof The inclusion L < H implies that Ca(L) > Ca(H). Since A/Cg(H) € Tl and 9/1is a
formation, A/Ca(L) € U Clearly Ca((H,L)) < Ca(H) McCa(L). Since is a formation,
A /(CA(H) NMCa(L)) € Wl Thenwe have A/Ca({H,L)) € 9. O

Lemma 2. Let R be a ring, 9/1 a formation of R-modules, G a group and A an RG-module.
Then

Cocgji(G) —{x € G IA/CA(x) € T}

is anormal subgroup of G.

Proof. By Lemma 1 Cocjji(G) is a subgroup of G. Now let x € Cocot(G), g € G. Then
Ca(xs) = Ca(x)". Since the mapping a Hmg, a € A, is R-linear,

A/Ca(X) Ag/CA(X)g = A/CA(X)g = A/Ca(x8),

which shows that A/Ca(xs) € and hence x# € Cocot(G).O

Clearly the class of minimax modules over an integral domain R is a formation and so we
obtain the following result.

Corollary 1. LetR be aring, G agroup and A an RG-module.
() L, H are subgroups of G such that L < H and a factor-module A /Cpg (H) is minimax,
then A/Ca(L) is also minimax.

(i) If L, H are subgroups of G whose cocentralizers are minimax, then A/Ca({H, L)) is
also minimax.

Corollary 2. LetR bearing, G agroup and A an RG-module. Then
CocR-mmx(G) = {x € G A/ Ca(x)is minimax}
is anormal subgroup ofG.
A group G is said tobe perfect if G does not include proper subgroups of finite index.

Lemma 3. Let G be a locally generalized radical group and A be a Z p*G-module. Suppose
that A includes a Z p™-minimax >Xp™G-submodule B, which is minimax. Then the following
assertions hold:

(i) G/ Cg(B) is soluble-by-finite;

(i) ifG/cgq {B) isperiodic, then it is nilpotent-by-finite;

(iii)ifG/CG(B) is $ —perfect and periodic, then it is abelian; moreover [[B G], G] = (0).



Proof. Without loss of generality we can suppose that Cq(B) — (1). Since B is minimax, it has
a series of G-invariant subgroups (0) < D < K < Bwhere D is divisible Chernikov subgroup,
K/D is finite, and B/K is torsion-free and has finite Z p—-rank. In particular, the n(D) =
{p}. Clearly D is G-invariant. The factor-group G/Cg(D) is isomorphic to a subgroup of
GLmM(Qp*°) where Qpo° is the field of fractions of Z p~and m satisfies gqm= |Qu(0)]. Let Q p*®be
a field of fractions of Z p~, then G/Cq(D) isisomorphic to a subgroup of GLm(Q p°°). Note that
char(Qpco) = 0. Being locally generalized radical, G/Cc (D) does not include the non-cyclic
free subgroup; thus an application of Tits Theorem (see, for example, [12, Corollary 1017])
shows that G/Cg (D) is soluble-by-finite. If G is periodic, then G/Cg(D) is finite (see, for
example, [12, Theorem 9.33]). Since K/D s finite, G/Cg{K/D) is finite. Finally, G/Cg(B/K)
is isomorphic to a subgroup of GLr(Qp, where r = 14&A(B/K). Using again the fact that
G/Cg(A/K) does not include the non-cyclic free subgroup and Tits Theorem or Theorem 9.33
of the book [12] (for periodic G), we obtain that G/Cc(B/K) is soluble-by-finite (respectively
finite whenever G is periodic). Put

Z = CG(D) n Cc(K/D) n CG{B/K).

Then G/Z is embedded in G/Cq{D) MNG/Cg{K/D) MG/Cc(B/K), in particular, G/Z is
soluble-by- finite (respectively finite).

If x € Z, then x acts trivially in every factors of the series (0) < D < K < A. By Kaloujnin's
theorem [7] Z is nilpotent. It follows that G is soluble-by-finite (respectively nilpotent-by-
finite).

Suppose now that G is an ~-perfect group. Again consider the series of G-invariant sub-
groups (0) < K < B. Being abelian and Chernikov, K is a union of the ascending series

(0) = KO< Ki < .. < Kn< Kntl < ...

of G-invariant finite subgroups Kn, n € N. Then the factor-group G/Cc(Kn) is finite for every
n € N. Since G is *-perfect, G = Cc(K,,) foreach n € N. The equality K — UneN Kn implies
that G = Cg(K). A s proved above, since G/ Cq(B/K) is soluble-by-finite and *-perfect, it is
soluble. Then G/Cc(B/K) includes normal subgroups U, V such that Cg(B/K) < U <V,
U/Cg(B/K) is isomorphic to a subgroup of UTr(Q p<>), V/U includes a free abelian subgroup
of finite index [1, Theorem 2]. Since G/Cg(B/K) is 5-perfect, it follows that G/Cg(B/K)
is torsion-free. Then G/Cg(B/K) must be identity, because it is periodic. In other words,
G = Cg(B/K). Hence G acts trivially in every factors of a series (0) < K < B, so that
[IB G], G] = (0), and using again Kaloujnin's theorem [7], we obtain that G is abelian. O

Lemma 4. Let G be a Chernikov g-group and A aZ p*G-module. If A/CA(G) is minimax (as
a Zpoo-module), then the additive group of A{0jZp"G) is a Chernikov p-subgroup and g = p.

Proof. For each element x of G consider the mapping dx : A — A, defined by the rule
ox(0) = a(x —1), a € A. Clearly this mapping is a Z p°o-endomorphism of A, Ker(<tx) = CA(X)
and Im () = A(wZp=(X)) = A(x —1). Hence

A(X - 1) = Im(EX) =zpm A/Ker(Sx) = A/Ca(x).

Since A/Ca (G) is minimax, it has finite special rank r for some positive integer r. An inclusion
CA{G) < CA(x) follows that A/Ca(x) has a special rank at mostr. Then r(A(x —1)) < .

Let Abe a positive integer such that | (G)] = gk. Then G has an ascending series of finite
subgroups
ILx=Cix(G) <L2< ...<Ln< Ln+l< ...

such that Ln = Dri<;<f(X,,,), where WJ\« gn for each j, and G = UneN Lnmil'he equality
A(cx;Zp°oL,,) = A(wZp®°® (xM)) + - -+ A(wZp°° (XMY) —AXM —1) +... + A(xTk—1)

together with r(J1(x,,. - 1)) < r, 1 < j < K shows that r(A(a;ZL,,)) < rkforevery n € N.
Since G = UneN Ln we have A(cvZp*G) = U,eN A(wXp~En), moreover L,, < L,+1 implies
that A{coXp™Ln) < A(wZ pooL,,+1) for every n € N. Let B be an arbitrary finitely generated
subgroup of A(o;Zp<>G). Then there exists a positive integer m such that B < A (w Zp<slm). By
proved above B has at most rk generators. It follows that A(coZp°°G) has a finite special rank
at most rk.

Let Q be the divisible part of G. Since A/Ca(Q) is minimax, A has a series of Z p»G-
submodules Ca(f>) — C < T < A where T/C = Tor(A/C) is a Chernikov group and A/T
is torsion-free and has finite Z p—-rank. Repeating the final part of the proof of Lemma 3, we
obtain that Q = Cq(T) and Q = Cq(A/T).

Let a be an arbitrary element of T. Consider the mapping 74 : Q A(wZ p*Q), defined
by the rule 7a(x) = a(x —1)- By X —D(y —1) = (xy —1) —(x —1) —(y —1). We have
axy - 1) = ax-1+aly-1)+ax- 1y -1 = ax -1 +aly - 1). An equality Q =
Cq(T) implies that a(x - 1)(y - 1) = 0. In other words, 7Uixy) = 74a(*) + 7«(y)/thus 7ais a
homomorphism. Furthermore, Ker(7i3 = Cq(a) and Im(7e) = (a)(wZ pocQ) = [a,Q], so that
[2 Q] = Q/Cq(a). It follows that if [a Q] @ (0), then itis a divisible Chernikov subgroup and
M([a,Q]) C n(Q) = {q}. Since itisvalid for every a € T, T(coZp<»Q) is a divisible subgroup
(if it is non-trivial) and n(T (a>Zp°°Q)) C U(Q) = {q}. By proved above, T (0;Zp~Q) has finite
special rank, and therefore T (a;ZpQ) is a Chernikov subgroup.

Consider now the factor-module A/V where V = T(0?Zp~Q). Then the inclusion
T/V < Ca/v(Q) implies that (A/V)((vZp<*Q) < T/V. Using the above arguments, we obtain
that (A/V)(toZpo°Q) is a Chernikov divisible group such that n((A/V)(a;ZpooQ)) C n(Q).
We have

(A/V)(cozZpooQ) = (A(cvZp°°Q) +V)/V = (A(WZr Q) + T(a;Zp» QN/ (T (wZp» Q),

which follows that A{u)Zp™Q) is a Chernikov divisible subgroup such that
TI(A(ivZpo©°Q)) C M (Q).

LetM = A(coZp°°Q), then Q < Cc(A/M), in particular, G/Cc {A/M) is finite. By proved
above (A/M)(a;Zp°oG) has finite special rank. Using the above arguments, we obtain that
(@a+ M)(a;Zpc°G) is a finite group and MN((n + M)(0;Zp°°G)) C n(G) = {q} for every ele-
menta € A. The finiteness of n(G) implies that [A/M){wZp*G) is a Chernikov subgroup
of A/M and n((A/M)(a;Zp~G)) C n(G) = {q}. Hence A(a;Zp—-G) is Chernikov and
n(A(a;Zp<»G)) C n(G) = &Y butn(A(a;Zp°°G)) C {p} sowe have q= p. O

Corollary 3. LetG be agroup and A aZ p*G-module. IfA/Ca{G) is minimax asZ p°°~module,
then every locally generalized radical subgroup of G/Cg{A) is soluble-by- finite, and every
periodic subgroup ofG/Cc{A) is nilpotent-by-finite.



Proof. Indeed, Lemma 3 shows that G/Cqg(A/Ca(G)) is soluble-by-finite. Every element x €
Cg(A/Ca(G)) acts trivially in the factors of the series (0) < Ca(G) < A. It follows that
Cg(A/Ca{QG)) is abelian. Suppose now that H/Cg{A) is a periodic subgroup of G/Cq(A).
Since A/Cp,(G) is minimax, A has a series of H-invariant subgroups

(0) < Ca(G) <D<K<A,

where D/C g, (G) is adivisible Chernikov subgroup, K/D is finite and A/K is torsion-free and
has finite Zpoo-rank. In Lemma 3 we have already proved that G/Cq (D/Ca (G)), G/CG(K/D)
and G/Cc (A/K) are finite. LetZ = Cg(D/Ca(G)) MCG{K/D) MCG(A/K). Then G/Z is
finite. If x € Z, then x acts trivially in every factors of a series (0) < Ca(G) < D < K < A. By
Kaloujnin's theorem [7] Z is nilpotent. |

Let G be a generalized radical group and let R\be a normal subgroup of G, satisfying the
following conditions: R\ s radical, G/R\ does not include the non-trivial locally nilpotent
normal subgroups. Then G/R\ must include a non-trivial normal locally finite subgroup. It
follows that the locally finite radical R2/R 1is non-trivial. If we suppose that G/R2 includes
a non-trivial normal locally finite subgroup L/R2, then L/R\ is also locally finite, which con-
tradicts the choice of R2- This contradiction shows that G/R 2 does not include a non-identity
normal locally finite subgroup, and therefore it must include a non-identity normal locally
nilpotent subgroup. Let R3/R 2be a normal subgroup of G/R 2 satisfying the following con-
ditions: R3/R2is radical, G/R3 does not include non-identity locally nilpotent normal sub-
groups. Using similar arguments, we construct the ascending series of normal subgroups

Q) = Rg5 Rl 5 - R« < Roetl < mmR7 — G,

whose factors are radical or locally finite, and if RKi™N/ Ra is radical (respectively locally finite),
then Ru+2/ Ra+i is locally finite (respectively radical).
This series is called a standard series of a generalized radical group G.

Lemma 5. Let G be a group and let A be a minimax-antifinitary XXp<>G-module. Then every
proper generalized radical subgroup of G/ Cq(A) is soluble-by-finite.

Proof Again we will suppose that CG(A) — (1). Let L be an arbitrary proper generalized
radical subgroup of G. Let

(1) = Ro< R\< ...Ra< RK+Hl< ... Ry —L,

be a standard series of L. Suppose that 7 > w (a; is the first infinite ordinal) and consider
the subgroup Ro,. Assume that Ry, is finitely generated, that is Rto = (n\,...,w) for some
elements Mi,..., M. The equality Rw = U«eN R» shows that there exists a positive integer m
such that u\,...,ut € Rm. But in this case, = Rmand we obtain a contradiction. This
contradiction shows that R is not finitely generated. It follows that A/Ca(Ru) is minimax.
Corollary 3 shows that Rw is soluble-by-finite. In this case = R2and we again obtain a
contradiction. This contradiction shows that 7 —k for some positive integer.

Now we will use induction by k for a proof of our assertion. Consider the subgroup R\
Then either R\ is radical or locally finite. If R\is not finitely generated, then A/Cpg (R") is

minimax. Corollary 3 shows that R\is soluble-by-finite. Suppose that R\is finitely generated.
If R\is locally finite, then it is finite. Therefore assume that R\is radical. Let

D = Vb< Vi< ..V* < Vatl <...V4= Ri,

be an ascending series of R\where Va+i/V a is the locally nilpotent radical of Ri/Va,a < n.
Using the above arguments we obtain that n —d for some positive integer d. Let mbe anumber
such that all factors Vm+/V m Vm&2 /Vm+\.- - -/Vd/Vd-1 are finitely generated. Since they are
locally nilpotent, they must be polycyclic. It follows that Mi/ Vimis polycyclic. In particular if
every subgroup Vj is finitely generated, 1 <j <d, then R\is polycyclic. Therefore assume that
there is a positive integer s such that Vs is not finitely generated, but a subgroup Vj is finitely
generated for allj > s. Then A/Ca(Y5) is minimax and Corollary 3 yields that Vs is soluble.
In this case R\/ \isis polycyclic, so that R\is soluble.

Suppose that we have already proved that all subgroups Rj, R2, ..., Rk-i are soluble-by-
finite. Repeating the above arguments, we obtain that and R" is soluble-by-finite, and the
result is proved. I

Lemma 6. Let G beagroup and let A be a minimax-antifinitary Z p°°G-module. IfH isaproper
subgroup ofG and Cocz @3-nmx(G) does notinclude H, then H is finitely generated.

Proof. Indeed if we suppose that H is not finitely generated, then A/Ca(H) isminimax. Corol-
lary 1 shows that A/Ca(/r) is minimax for each element h € H. It follows that
H < Cocz po-mmx(G), and we obtain a contradiction with the choice of H. |

2 Proofs of the main results

Proposition 1. Let G be alocally generalized radical group and let A be a minimax-antifinitary
Z p°°G-module. If G/Cocziba-m(G) is not finitely generated, then G/Cg(A) is a quasicyclic
g-group for some prime q.

Proof. Again suppose that Cg(A) = (1). LetM = Coczpg®D-mmx(G). Let A be a proper sub-
group of G. If M does not include H, then Lemma 6 shows that H is finitely generated. In
particular if M < H, then H/M is finitely generated. In other words, every proper subgroup
of G/M is finitely generated. By [8, Proposition 27] G/M is a quasicyclic *-group for some
prime q.

Let L/M be a proper subgroup of G/M, then L/M s a finite cyclic subgroup. An applica-
tion of Lemma 6 shows that the subgroup L is finitely generated. The finiteness of index L : M|
implies that M is finitely generated (see, for example, [5, Corollary 7.2.1]). Using Lemma 5 we
obtain that M is soluble-by-finite. Then M includes a maximal normal soluble subgroup S
such that M /S s finite. It is not hard to see, that S is G-invariant. Let D = S', then M/D is
abelian-by-finite and finitely generated, therefore it is noetherian. Let V/D be a proper sub-
group of G/D. If M/D does not include V/D, then M does not include V, and as above, V is
finitely generated. Then V /D is also finitely generated. If V/D < M /D, then again V/D is
finitely generated. Thus every proper subgroup of G/D is finitely generated, and application
of [8, Proposition 2.7] shows that G/D is a quasicyclic group. Since M /D is a proper subgroup
of G/D, M /D is a finite cyclic subgroup. Suppose that D ¢ (1), then K= D' ¢ D. Repeating
the above arguments, we obtain that G/K is a quasicyclic group. In particular, it is abelian.



Then S/K is abelian, which follows that K > S' = D. This contradiction shows that D = (1),
so that G is a quasicyclic group. O

Lemma 7. Let G be a locally generalized radical group and let A be a minimax-antifinitary
Z po°G-module. Suppose that G ¢@ CocZCa-nmx(G), G is not finitely generated, and
G/Coczm<,-MmX(G) is finitely generated. Then G is soluble and G/ Cocz po-mmx(G) is a group
ofaprime orderq.

Proof. Again suppose that Cg(-A) = (1)- Let D = Coczpe-mmx(G). Since G/D is finitely
generated, G = (M, D) for some finite subset M of G. We may suppose that M is minimal
finite set with this property, thatis G ® (S, D) for each proper subset S of M. Now suppose
that |M] > 2. Then M includes two proper subsets X, Y such that M = X UY. By the choice of
M, the subgroups (X, D) and (Y, D) are proper and also (X, D) ¢ D, (Y,D) ¢ D. By Lemmaé6
both subgroups (X, D) and (Y, D) are finitely generated. An equality X UY = M implies that
G = (X,Y,D) is finitely generated. This contradiction shows that |[M] = 1 In other words,
G /D is cyclic. Suppose that |G/D] is not a prime. Then G includes a proper subgroup B such
that D < B, B ® D, and G/B has a prime order. Using Lemma 6 we obtain that B is finitely
generated. The finiteness of G/B gives that G is finitely generated. This final contradiction
proves that G/D has a prime order. Choose an element g such that G = (g,D).

Since G is not finitely generated, D cannot be finitely generated. Using Lemma 5, we obtain
that D is soluble-by-finite. Let S be a maximal normal soluble subgroup of D having finite
index. Suppose that D ¢ S. Clearly S is G-invariant. Since D/S is finite and non-soluble,
S(g> ¢ D. It follows that S(g) is a proper subgroup of G. Since D does not include S(g),
S(g) is finitely generated by Lemma 6. Then S(g”) is finitely generated (see, for example, [5,
Corollary 7.21]). Since the index |D : §] is finite, D is finitely generated. This contradiction
shows that D is soluble. Hence G is soluble. |

Let K be a finite group. We have X\= p[' ...pi* where pi,...,psare primes and pm cDPj
whenever m @ j. Put N (K) = {pi,. ps}

Corollary 4. Let G be a locally generalized radical group and let A be a minimax-antifinitary
Z po°G-module and D = Cocz p,-mmx(G). Suppose thatG ¢ D,G isnot finitely generated and
G/ D isfinitely generated. Letg be an element of G with aproperty G = (g)D. IfHisanormal
subgroup of G, having finite index, then H(g) = G. Moreover, G/H is a g-group.

Proof. If we assume that H(g) is a proper subgroup of G, then the choice of g yields that D
does not include H(g). By Lemma 6, H(g) is finitely generated. Since H(g) has finite index, G
must be finitely generated. This contradiction shows that H (g) = G.

Suppose that n(G/H) & {qg}. Let P/H be a Sylow ~-subgroup of G/H. Then P/H is
a proper subgroup of G/H. Since P has finite index in G, P is not finitely generated. Then
A/Ca(P) is minimax. It follows that P < D. On the other hand, G/D is a non-trivial g-group
and therefore D cannot include P. This contradiction proves that G /H is a ij—-group. O

Let G be a group, denote by Tor(G) the maximal normal periodic subgroup of G (periodic
part of G).

Proposition 2. Let Gbea locally generalized radical group and let A be a minim ax-antifinitary
Zpo°G-module. Suppose that G ® Coczpo-mmx{G), G is not finitely generated and

G/Coczpco-mmx(G) is finitely generated. If G/G' is infinite, then G = Q x (g) where Q is

a quasicyclic p-subgroup, g is a d-element and gd € Coczplammx{G), where p, d are primes
(not necessary different).

Proof. As usual we suppose that Cg(A) = (1). Let D = Cocz-mmx(G). By Lemma 7, G is
soluble and G/D is a group of a prime order g Choose an element g such that G = (g,D).

Put K = G', then K < D. Suppose that K(g) = G. Since G/K is infinite and
G/K —K(g)/K = (g)/((g) N K) we obtain that gK has infinite order. Let r\.r2be two distinct
primes. Then K(gn) is a proper subgroup of G. Since it has finite index in G, K(gn) is not
finitely generated. It follows that A/CA(K(gn)) is minimax for every j € {1,2}. Since N\\¢ r2
we have (g) = (gri)(gr?- Corollary 1 shows that A/CA((g)) is minimax, thatisg € D, and
we obtain a contradiction with the choice of g. It shows that K(g) is a proper subgroup of G.

Now let Z/(K(g)) be a proper subgroup of G/(K(g)). Then D does not include Z and
hence Lemma 6 shows that Z is finitely generated. If we assume that Z has finite index in G,
then G must be finitely generated, so we obtain a contradiction. This contradiction shows that
the factor-group G/(K(g)) is *-perfect. Then G/(K(g)) includes a subgroup P/(K(g)) such
that G/P is a quasicyclic d-group for some prime d. Since g € P, we have that D does not
include P. By Lemma 6, P is finitely generated. It follows that G/K is an abelian minimax
group. Suppose that Tor(G/K) ® G/K. Then T/K = Tor(D/K) ¢ D/K. Put

T = {rlrisaprime suchthat D/T ® (D/T)r}

Since D/T is torsion-free and minimax, the set 7 is infinite. Therefore we can choose a prime r
suchthatr ¢ gandr € © Let L/T = (D/T)r, then D/L is a non-identity elementary abelian
r-group. By the choice of L, n (G /L) = {r, g} and this contradicts Corollary 4. Hence we have
that G/K is periodic. In this case, P/K is finite, so that G/K is a Chernikov group. Let Q/K
be the divisible part of G/K. Since Q/K = G/P, Q/K is a quasicyclic *~subgroup. Since Q
has finite index in G, Corollary 4 shows that G = Q(g) and G/Q is a ij—-group. It follows that
G/K = Q/K x (gK) (see [2 Theorem 21.2]). Moreover, by Lemma 4 Q is a p—group.

Suppose that K ¢ (1). Then L = K' ¢ K. We have already proved above that K(g) is a
proper subgroup of G. Since D does not include K(g), Lemma 6 shows that K(g) is finitely
generated. The fact that G/K is periodic implies that K has finite index in K(g). Then K
is finitely generated (see, for example, [5, Corollary 7.2.1]). Thus K/L is a finitely generated
abelian group. Then K/L includes a proper G-invariant subgroup V/L of finite index in K/L
(this subgroup can be identity). Then G/V is a Chernikov group with finite derived subgroup.
Let Q\/V be the divisible part of G/V, then Q\/V = Q/K, so that Q\/V is a quasicyclic o
subgroup. Since [G/V,G/V] is finite, Q\/V < £(G/F). Since index |G : Qi] is finite, G =
Qi (g) by Corollary 4. This equality together with the inclusion Q\/V < {(G/V) implies that
G/V is abelian. Butin this case K < V, and this contradicts with the choice of V. Consequently
we have K = (1). So Q is a proper subgroup of G which is quasicyclic (/-group, than by
Lemma 4 Q is a p—group. O

Proposition 3. Let Gbea locally generalized radical group and let A be a minimax-antifinitary
Zp~"G-module. Suppose that G ¢ Cocz@@-mmx(G), G is not finitely generated and
G /CoczpX-mmx(G) is finitely generated. If G/G' is finite, then G includes a normal divisible
Chernikov p-subgroup Q, such that G = Q(g) where g is a d-element, gd € Cocz «.-mmx(G)
and p, d are primes (not necessary different). Moreover, the subgroup Q is G-quasifinite.



Proof. As usual we suppose that Cg(A) = (1). Let D = Coc”»-mmx(G). By Lemma 7, G is
soluble and G/D is a group of a prime order d. Choose an element g such that G = (g, D).

Put K = G'. Since G/K is finite, Corollary 4 shows that G = K(g) and G/K is a d-group. It
follows that K is not finitely generated.

Since G is not finitely generated and soluble, L = K' is a proper subgroup of K. If we
suppose that (g,L) = G, then G/L = (g)L/L = (g)/{(g) ML) is abelian. It follows that
K < L, and we obtain a contradiction. Thus (g, L) is a proper subgroup of G. If we suppose
that G/L is finite, then Corollary 4 shows that G = L(g). Hence G/L is infinite, i.e. K/L is
infinite. As we noted above, (L,qg) is a proper subgroup of G. Since D does not include (L,q),
(L,9g) is finitely generated by Lemma 6. A subgroup (g) M K is cyclic, so that (g) (I K = (v) for
some v € (g). Then we have

Kn(L(9)) = L(Kn(g)) = L{V).

Clearly L(v) is a G-invariant subgroup of K. Furthermore, J(L,9) : L(V)\< |G: D] —d. It
follows that (L,v) is finitely generated (see, for example, [5, Corollary 7.2.1]). If we suppose
that K/(L(Vv)) is finitely generated, then K is finitely generated. This contradiction shows that
K/(L(v)) is not finitely generated.

Let Z/(L(v)) be a proper G-invariant subgroup of K/(L(v)), then we have
z(g) N K —X{{g) NK) = Z(v) = Z. It follows that Z(g) is a proper subgroup of G. Since D
does not include Z(g), Z(g) is finitely generated by Lemma 6.

Assume that K/(L(v)) includes a proper subgroup U/(L,v) of finite index. Then |G : U\
is finite, so that tii = CoreG(li) has finite index in G. By above proved U\(g) is finitely
generated. Finiteness of |G : U\]Jimplies that G is finitely generated. This contradiction shows
that K/(L(v)) is *perfect. Then K/(L(v)) includes a subgroup P/(L(v)) such that K/P is a
quasicyclic ij-group for some prime g We remark that K/Px = Kx/Px= K/P, i.e. K/Pxisa
quasicyclic g group for all x € G. Finiteness of G/K implies that the family {Px x € G} is
finite. Let {PxIx € G} = {Pi, Pi,..., Pm} where Pi = P. Then the embedding

K/CoreG(P) -4 G/Pi x G/P2x ... x G/Pm,

shows that K/CoreG(P) is a Chernikov (/-group. Since K/CoreG(P) is J- perfect, it is divisible.
Since (L,v) < P and (L,v) is G-invariant, (L,v) < C = CoreG(P). By proved above, C is
finitely generated. In particular, C/L is an abelian finitely generated group, so that K/L is an
abelian minimax group. Suppose that Tor(K/L) = T/L ¢ K/L. Put

T = {rlrisaprime such that K/T & (K/T)r}

Since K/T is torsion-free and minimax, the set 1t is infinite. Therefore we can choose a prime r

suchthatr@ dand re  LetM/T = (K/T)r,then K/M is anon-identity elementary abelian
r-group. Clearly a subgroup M is G-invariant. By the choice of M, M (G/M) ={r,d}. This

contradiction with Corollary 4 shows that K/L is periodic. In this case, C/L is finite, so that
K/L is Chernikov. Let Q/L be a divisible part of K/L The isomorphism Q/L = K/C shows
that Q/L is a “-subgroup. Since Q has finite index, an application of Corollary 4 shows that
G = Q(g) and G/Q is ad-group.

Suppose that Q/L includes an infinite G-invariant subgroup Q\/L and that Qi (g) is finitely
generated. Then Qi{g)/L = {Q\/L){gL) is also finitely generated. Now G/L is periodic, in

particular, (gL) is finite. It follows that Qi/L is finitely generated. On the other hand, Q\/L
is an infinite Chernikov group, therefore it cannot be finitely generated. This contradiction
shows that Qi (g) is not finitely generated. Then A/Ca (Qi (g)) is minimax. Corollary 1 shows
that g € D. This contradiction shows that Q/L is G-quasifinite.

Suppose that L @ (1). Then V — L' @ L We have already proved that L(g) is is finitely
generated. The fact that G/L is periodic implies that L has finite index in L(g). Then L is
finitely generated (see, for example, [5, Corollary 7.21]). Thus L/V is a finitely generated
abelian group. Then L/V includes a proper G-invariant subgroup JN/V of finite index in
L/V (this subgroup can be identity). Then K/W is a Chernikov group, having finite derived
subgroup. Let Q2/ W be the divisible part of K/W, then Qz/W = Q/L, sothat Qz/W is adi-
visible Chernikov (/-subgroup. Since (K/W)" is finite, Q2/W < {{K/W). Since index |G: Q2I
is finite, G = Qi(g) by Corollary 4. Then

K= Kn(Q2(9)) = QKT (9)) - Q2(V).

It follows that K/Q2 is cyclic. Then the inclusion Q2/W < " /W) implies that K/W is
abelian. But L <W, and this contradiction the choice of W. Consequently L is abelian. So Q is
a proper subgroup of G which is Chernikov I~group, than by Lemma 4 Q is a p—group. O

Recall that a group G have finite special rank r(G) = r if every finitely generated sub group
of G has at most r generators and there exists a finitely generated subgroup H of G such that
H has exactly r generators. Therefore every abelian minimax group has finite special rank.

3 Proof of the main Theorem

If G/D is not finitely generated, then Proposition 1shows that G is a group of type (2).

Suppose now that G/D is finitely generated. Then Lemma 7 proves that G is soluble and
G/D is a group of a prime order g If we assume that G/G' is infinite, then Proposition 2
shows that G is a group of type (2).

Finally suppose that G/G' is finite. Then Proposition 3 shows that G includes a normal
divisible Chernikov p-subgroup Q, such that G = Q(g) where g is a d-element, p, d are primes
(not necessary different). Moreover, gd € D and Q is G-quasi-finite. Finally, the assertion 3c
follows from the results of Section 3 of the paper [21], and the assertion 3d follows from Theo-
rem 3.4 of the paper [6].

Let G be a group of the type (2) or (3). Then D = Q(gd) is a proper Chernikov subgroup of
G, and hence it is not finitely generated. Then A/Ca(D) is minimax and Lemma 4 proves the
final assertion.
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Hexaih R — kinblg, G — rpyna. R-moaysib A Ha3MBaeTbCA MiHIMaKCHUM SKLLLO0 A MICTUTb HeTe-
poBuiA nigmMoay b B TakuiA, wo A/B apTiHOBUIA. BuByatoTbes Z p*G-mogyni A Taki, wo A/Ca(H) €
MiHIMaKCHUM 5K XKp°°-Modysib, A1 KOXHOT B/1acHOI Niarpynu H, sika He € CKIHYEHHO NMOPOA KEHOIO0.

Krouosi cioBa i opasn:  MiHIMaKCHMIA MoAy/1b, KOLLEHTpas1i3aTop, MoAyJ b Haf, FpYroBUM KiflbLIEM,
MiHiMaKCHO-aHTUIHITapHNIA RG -Mofay/ib, y3ara/ibHEHO pagvikasibHa rpyna.
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